K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2015

cái này hình như sai đề bạn ạ. vì : a,b,c >0 => a+b , b+c, c+a >0

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>0\)

với \(A>0\) ta luôn có: \(A>\sqrt{A}\) như 2 > căn 2 chẳng hạn

=> \(\frac{a}{a+b}>\sqrt{\frac{a}{a+b}}\) hay \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)

19 tháng 6 2015

\(vìa;b>0\Rightarrow\frac{a}{a+b}\frac{b}{b+c}\) (2)

.................................................\(\sqrt{\frac{c}{a+c}}>\frac{c}{c+a}\) (3)

Cộng vé với vế của từng bất dẳng thức => ĐPCM

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

22 tháng 8 2015

Ta sử dụng bất đẳng thức Chebyshev sau đây:

Nếu các số \(a\ge b\ge c,x\ge y\ge z\) thì \(3\left(ax+by+cz\right)\ge\left(a+b+c\right)\left(x+y+z\right).\)

Thực vậy bất đẳng thức cần chứng minh tương đương với \(\left(a-b\right)\left(x-y\right)+\left(b-c\right)\left(y-z\right)+\left(c-a\right)\left(z-x\right)\ge0.\)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó bất đẳng thức cần chứng minh tương đương với

\(\frac{a+b}{\sqrt{c\left(a+b\right)}}+\frac{b+c}{\sqrt{a\left(b+c\right)}}+\frac{c+a}{\sqrt{b\left(c+a\right)}}\ge2\left(\frac{c}{\sqrt{c\left(a+b\right)}}+\frac{a}{\sqrt{a\left(b+c\right)}}+\frac{b}{\sqrt{b\left(c+a\right)}}\right)\)

\(\leftrightarrow\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\ge0\)         (***)

Tuy nhiên ta có \(a+b-2c\ge c+a-2b\ge b+c-2a\)   và \(\frac{1}{\sqrt{c\left(a+b\right)}}\ge\frac{1}{\sqrt{b\left(c+a\right)}}\ge\frac{1}{\sqrt{a\left(b+c\right)}}\)  nên theo bất đẳng thức Chebyshev 

\(\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\)

\(\ge\frac{1}{3}\left(a+b-2c+b+c-2a+c+a-2b\right)\left(\frac{1}{\sqrt{c\left(a+b\right)}}+\frac{1}{\sqrt{b\left(c+a\right)}}+\frac{1}{\sqrt{a\left(b+c\right)}}\right)=0.\)

Vậy bất đẳng thức (***) đúng, nên ta có điều phải chứng minh.

8 tháng 6 2015

Ta có:\(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}

19 tháng 3 2020

đề bài sai rồi bạn nhé check lại đi 

20 tháng 3 2020

Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)

or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)

Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)

Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)

Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)

Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)

Done!