K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

giups mik, mik cần gấp lắm

12 tháng 12 2021

\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}\\ \Rightarrow\left\{{}\begin{matrix}4a+4b=3b+3c\\5a+5b=3c+3a\\5b+5c=4c+4a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4a+b-3c=0\\4a-5b-c=0\\2a+5b-3c=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}4a+b-3c=0\\4a=5b+c\\3c=2a+5b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5b+c+b-3c=0\\4a+b-2a-5b=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}6b=2c\\2a=4b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=3b\\a=2b\end{matrix}\right.\\ \Rightarrow M=20b+b-21b+2021=2021\)

AH
Akai Haruma
Giáo viên
19 tháng 7

Đề có điều kiện chưa đúng. Bạn xem lại nhé.

3 tháng 1 2018

Ta có: 

\(\hept{\begin{cases}\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\Rightarrow4a+b-3c=0\left(1\right)\\\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\Rightarrow4a-5b-c=0\Rightarrow4a=5b+c\left(2\right)\\\frac{c+a}{5}=\frac{a+b}{3}\Rightarrow3c+3a=5a+5b\Rightarrow2a+5b-3c=0\Rightarrow3c=2a+5b\left(3\right)\end{cases}}\)

Thay (2) vào (1) ta có: 3b=c

Thay (3) và (1) ta có: 2b=a

Vậy M=10a+b-7c+2017=10.2b+b-7.3b+2017=21b-21b+2017=0+2017=2017

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ bên trái khung soạn thảo)

30 tháng 7 2019

Giúp mẹ vs

Ai nhanh mà k

Mà đi cần gấp thanks

30 tháng 7 2019

Mẹ chuyển thanh mình nha mk

 Sory

24 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=\dfrac{a+b+b+c+c+a}{3+4+5}=\dfrac{a+b+b+c}{3+4}=\dfrac{b+c+c+a}{4+5}=\dfrac{a+b+c+a}{3+5}=\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}\)

Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}=\dfrac{b+2a+c-a-b-c}{8-6}=\dfrac{a}{2}\) (1)

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}=\dfrac{a+2b+c-a-b-c}{7-6}=\dfrac{b}{1}\)(2)

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{b+2a+c}{8}=\dfrac{b+2c+a-a-b-c}{9-6}=\dfrac{c}{3}\) (3)

Từ (1) và (2) và (3) ta có: \(\dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{3}\)

Đặt: \(\dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{3}=t\Leftrightarrow\left\{{}\begin{matrix}a=2t\\b=t\\c=3t\end{matrix}\right.\)

Ta có: \(M=10a+b-7c+2017=20t+t-21t+2017=21t-21t+2017=0+2017=2017\)Vậy \(M=2017\)