Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)
=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
tương tự như thế thay vào , thì A=8
Ta có:
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
Tương tự như thế thay vào, thì A = 8
Ta có:
\(a+b+c+\sqrt{abc}=4\)
\(\Leftrightarrow4a+4b+4c+4\sqrt{abc}=16\)
Ta lại có:
a(4 - b)(4 - c) = a(16 - 4b - 4c + bc) = a(4a + bc + \(4\sqrt{abc}\))
= (4a2 + \(4a\sqrt{abc}\)+ abc)
= (\(2a+\sqrt{abc}\))2
Tương tự ta có
b(4 - c)(4 - a) = (\(2b+\sqrt{abc}\))2
c(4 - a)(4 - b) = (\(2c+\sqrt{abc}\))2
Từ đây ta có
\(A= 2a+2b+2c+3\sqrt{abc}-\sqrt{abc}\)
\(=8\)
Nhầm
\(a+b+c-\sqrt{abc}=4\)
Thành
\(a+b+c+\sqrt{abc}=4\)
Mà thôi cũng làm tương tự thôi nên bạn tự làm lại nhé
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}=16\Rightarrow16-4b-4c=4a+4\sqrt{abc}\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự : \(\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\); \(\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
1) \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\left(ĐK:x\ne0\right)\)
Đặt: \(\sqrt{2x^2+9}=a\left(a\ge0\right)\)
\(\Leftrightarrow2x^2+9=a^2\Leftrightarrow9=a^2-2a^2\)
Khi đó pt đã cgo trở rhanhf:
\(\frac{a^2-2x^2}{x^2}+\frac{2x}{a}=1\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2-2+\frac{2x}{a}-1=0\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2+\frac{2x}{a}-3=0\) (*)
Đặt: \(\frac{a}{x}=b\) khi đó (*) trở thành:
\(b^2+\frac{2}{b}-3=0\)
\(\Leftrightarrow b^3+2-3b=0\)
\(\Leftrightarrow\left(b^3-b\right)-\left(2b-2\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b+1\right)-2\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b^2+b-2\right)=0\)
\(\Leftrightarrow\left(b-1\right)^2\left(b+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}b-1=0\\b+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}b=1\\b=-2\end{array}\right.\)
Với: \(b=1\) ta có:
\(\frac{a}{x}=1\Leftrightarrow a=x\Leftrightarrow\sqrt{2x^2+9}=x\Leftrightarrow2x^2+9=x^2\Leftrightarrow x^2+9=0\left(loai\right)\)
Với: \(b=-2\) ta có:
\(\frac{a}{x}=-2\)
\(\Leftrightarrow a=-2x\)
\(\Leftrightarrow\sqrt{2x^2+9}=-2x\)
\(\Leftrightarrow2x^2+9=4x^2\)
\(\Leftrightarrow2x^2=9\)
\(\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{array}\right.\)
Thử lại ta thấy: \(x=\frac{3}{\sqrt{2}}\left(ktm\right);x=-\frac{3}{\sqrt{x}}\left(tm\right)\)
Vaayk pt đã cho có nhgieemj là \(x=-\frac{3}{\sqrt{2}}\)
Lời giải:
Ta có:
\(a(4-b)(4-c)=a(16-4b-4c+bc)=a[16-4(4-a-\sqrt{abc})+bc]\)
\(=a(4a+4\sqrt{abc}+bc)=4a^2+4a\sqrt{abc}+abc\)
\(=(2a+\sqrt{abc})^2\)
\(\Rightarrow \sqrt{a(4-b)(4-c)}=2a+\sqrt{abc}\)
Hoàn toàn tương tự với các biểu thức còn lại, suy ra:
\(M=2a+\sqrt{abc}+2b+\sqrt{abc}+2c+\sqrt{abc}-\sqrt{abc}\)
\(=2(a+b+c+\sqrt{abc})=2.4=8\)
Ta co:
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16+bc-4b-4c\right)}\)
\(=\sqrt{a\left(bc+4a+4\sqrt{abc}\right)}=\sqrt{abc+4a^2+4a\sqrt{abc}}\)
\(=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự ta cũng co:
\(\hept{\begin{cases}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{cases}}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Bạn xem tại đây.
Câu hỏi của Hoa Hồng Nhung - Toán lớp 9 | Học trực tuyến
em cảm ơn cô ^ ^