Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có:
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^2=a^2\)
\(\Rightarrow b^2+2bc+c^2=a^2\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự:
\(b^2-c^2-a^2=2ca,c^2-a^2-b^2=2ab\)
Từ đây suy ra:
\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Mặt khác lại có:
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^3=-a^3\)
\(\Rightarrow b^3+c^3+3bc\left(b+c\right)=-a^3\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow A=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3}{2}\)
\(a+b+c=0\)
\(a+b=-c\)
\(\left(a+b\right)^3=\left(-c\right)^3\)
\(a^3+3a^2b+3ab^2+b^3=-c^3\)
\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(a^3+b^3+c^3=-3ab\left(-c\right)\)
\(a^3+b^3+c^3=3abc\left(1\right)\)
\(P=\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}\)
\(P=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(P=\dfrac{a^3+b^3+c^3}{abc}\)
Thay (1) vào P ta được :
\(P=\dfrac{3abc}{abc}=3\)
Vậy.......
\(\Leftrightarrow a^2\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+b^2\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+c^2\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)=0\)
\(\Leftrightarrow\dfrac{a^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^2\left(a-b\right)}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^2\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}=0\)
\(\Leftrightarrow a^2\left(c-a\right)\left(c+a\right)+b^2\left(a-b\right)\left(a+b\right)+c^2\left(b-c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^2\left(c^2-a^2\right)+b^2\left(a^2-b^2\right)+c^2\left(b^2-c^2\right)=0\)
\(\Leftrightarrow a^2c^2+a^2b^2+b^2c^2-a^4-b^4-c^4=0\)
\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a^2-c^2\right)^2+\left(b^2-c^2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b^2=0\\a^2-c^2=0\\b^2-c^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=0\\\left(a-c\right)\left(a+c\right)=0\\\left(b-c\right)\left(b+c\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) (do \(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ne0\) \(\Rightarrow\left\{{}\begin{matrix}a+b\ne0\\a+c\ne0\\b+c\ne0\end{matrix}\right.\))
\(\Rightarrow a=b=c\)
Câu 3:
\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)
\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)
=>3x-2>0
=>x>2/3
Câu 1:
a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)
\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)
\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)
\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)
\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)
\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)
\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)
\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)
\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)
b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)
TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)
Lời giải
\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)
\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)
\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)
\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)
\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm
Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem
Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé
bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2
Ta sẽ giả sử
\(a^2+\dfrac{1}{a^2}\ge2\)(2)
\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)
BĐT (2) đúng suy ra BĐT (1) đúng
Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)
CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)
\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)
Nhân vế theo vế của (*) , (**) , (***) ta được
\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 1
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+\left(a-c\right)^2+c^2+2\left(ab-ac-bc\right)}{b^2+\left(b-c\right)^2+c^2+2\left(ab-ac-bc\right)}\)
\(=\dfrac{a^2+a^2-2ac+c^2+c^2+2ab-2ac-2bc}{b^2+b^2-2bc+c^2+c^2+2ab-2ac-2bc}\)
\(=\dfrac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}\)
\(=\dfrac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\dfrac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(a-c+b\right)}=\dfrac{a-c}{b-c}\left(đpcm\right)\)
Lời giải:
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow \frac{ab+bc+ac}{abc}=0\Leftrightarrow ab+bc+ac=0\)
\(\Leftrightarrow 2(ab+bc+ac)=0\)
Cộng cả hai vế với \(a^2+b^2+c^2\) thì:
\(a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2\)
\(\Leftrightarrow (a+b+c)^2=a^2+b^2+c^2\)
Do đó ta có đpcm.
Ta có a+b+c=0 => b+c=-a => a^2=b^2+2bc+c^2=> a^2-b^2-c^2=2bc
Tương tự ta có : b^2-c^2-a^2=2ca
c^2-a^2-b^2=2ab
=> a^2/2bc+b^2/2ca+c^2/2ab=(a^3+b^3+c^3)/2abc
=>Ta lại có a^3+b^3+c^3=(a+b+c)^3+
(a+b+c)^3-3(a+b)(b+c)(c+a)=0+3abc=3abc
=> A=3abc/2abc=3/2