Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)
Lời giải:
\(P=\frac{1}{a^3+b^3}+\frac{1}{ab}=\frac{1}{(a+b)^3-3ab(a+b)}+\frac{1}{ab}=\frac{1}{1-3ab}+\frac{1}{ab}\)
\(=\frac{1}{1-3ab}+\frac{3}{3ab}\geq \frac{(1+\sqrt{3})^2}{1-3ab+3ab}=(1+\sqrt{3})^2\) theo BĐT Cauchy-Schwarz
Vậy \(P_{\min}=(1+\sqrt{3})^2\)
pro2k7trần đưc thái: dấu "=" xảy ra khi \(\frac{1}{1-3x}=\frac{1}{\sqrt{3}x}\)
\(\Leftrightarrow x=\frac{3-\sqrt{3}}{6}\Leftrightarrow ab=\frac{3-\sqrt{3}}{6}\)
Kết hợp $a+b=1$ thì theo Viet đảo em có:
\((x,y)=(\frac{3-\sqrt{6\sqrt{3}-9}}{6}; \frac{3+\sqrt{6\sqrt{3}-9}}{6})\) và hoán vị.
Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)
Và \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\ge2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{b+1}=a^3-\frac{a^3b}{b+1}\ge a^3-\frac{a^3b}{2\sqrt{b}}=a^3-\frac{a^3\sqrt{b}}{2}\)
Tương tự cho ta cũng có:\(\frac{b^3}{a+1}\ge b^3-\frac{b^3\sqrt{a}}{2}\)
\(\Rightarrow Q\ge a^3+b^3-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\left(1\right)\)
TIếp tục xài AM-GM: \(\sqrt{b}\le\frac{b+1}{2}\Rightarrow a^3\sqrt{b}=\frac{a^3b+a^3}{2}\)
\(\Rightarrow\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\le\frac{\frac{a^3b+a^3}{2}+\frac{ab^3+b^3}{2}}{2}=\frac{a^3b+ab^3+a^3+b^3}{4}\)
\(\Rightarrow2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\frac{a^3b+ab^3+a^3+b^3}{4}\)
Cần chứng minh \(2-\frac{a^3b+ab^3+a^3+b^3}{4}\ge1\)\(\Leftrightarrow\frac{a^3b+ab^3+a^3+b^3}{4}\ge1\)
\(\Leftrightarrow a^3b+ab^3+a^3+b^3\ge4\Leftrightarrow a^3b+ab^3\ge2\) vì \(a^3+b^3\ge2\)
\(\Leftrightarrow\left(ab\right)^2\left(a+b\right)\ge2\) đúng vì ab=1 và \(a+b\ge2\)
\(\Rightarrow Q_{Min}=2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-1=1\)
Khi a=b=1
Câu 1
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 2:
\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24
từ giả thiết, ta có \(\frac{a^2}{b}+\frac{b^2}{a}\le1\)
Mà \(\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\Rightarrow a+b\le1\)
Mà từ BĐT cô-si, ta luôn có \(\left(a+b\right)^3\ge4ab\left(a+b\right)\ge4\left(a^3+b^3\right)\left(a+b\right)\Rightarrow\frac{\left(a+b\right)^3}{4}\ge\left(a^3+b^3\right)\left(a+b\right)\)
Mà áp dụng BĐT Bu-nhi-a , ta có \(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)
=>\(\frac{\left(a+b\right)^3}{4}\ge\left(a^2+b^2\right)^2\Rightarrow\frac{1}{4}\ge\left(a^2+b^2\right)^2\Rightarrow a^2+b^2\le\frac{1}{2}\)
Mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\frac{1}{2}}=\frac{8}{5}\)
Dấu = xảy ra ,=> a=b=1/2
^_^
\(a^3+b^3\le ab\Leftrightarrow ab\left(a+b\right)\le ab\Leftrightarrow a+b\le1.\).Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}.\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\left(a+b\right)^2-2ab}\ge\frac{4}{2+1-\frac{1}{2}}\ge\frac{8}{5}.\)
Dấu bằng xảy ra khi a=b=1/2.