Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 5x1y Chia cho 5 dư 4 nên y=0 hoặc y=9
Mà 5x1y chia hết cho 2 nên y bằng 0
Thay y=0 ta được : 5x10
Có 5+x+1+0=x+6
Để 5x10 chia hết cho 3 thì x=0,3,6,9
Mà 5x10 là số có 4 chữ số khác nhau nên x=3.6.9
Vậy.......
y phải là 4 vì 4 chia 5 dư 4 và chia hết cho 2
ta có: 5+1+4= 10
vậy x=5
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Câu 1: (a;b)= {(0;1); (1;0); (2;2); (1;3); (3;1); (4;3); (3;4); (5;5); (7;3); (3;7); (2;5); (5;2); (1;6); (6;1); (9;1); (1;9); (4;6); (6;4); (2;8); (8;2); (6;7); (7;6); (8;5); (5;8); (9;4); (4;9); (9;7); (7;9); (8;8)}
Bài 1:
a: \(\overline{735x}⋮2\)
=>\(x⋮2\)
=>\(x\in\left\{0;2;4;6;8\right\}\left(1\right)\)
\(\overline{735x}\) chia 5 dư 3
=>x chia 5 dư 3
=>\(x\in\left\{3;8\right\}\left(2\right)\)
Từ (1) và (2) suy ra x=8
b: \(\overline{735x}\) chia 2 dư 1
=>x lẻ
mà 0<=x<=9
nên \(x\in\left\{1;3;5;7;9\right\}\left(3\right)\)
\(\overline{735x}\) chia 5 dư 4
=>x chia 5 dư 4
mà 0<=x<=9
nên \(x\in\left\{4;9\right\}\left(4\right)\)
Từ (3) và (4) suy ra x=9
Bài 2:
Đặt \(A=\overline{4x73y}\)
A chia cho 2 du1
=>y lẻ
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(5\right)\)
A chia 5 dư 1
=>y chia 5 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;6\right\}\left(6\right)\)
Từ (5) và (6) suy ra y=1
=>\(A=\overline{4x731}\)
A chia hết cho 9
=>4+x+7+3+1 chia hết cho 9
=>x+14 chia hết cho 9
mà 0<=x<=9
nên x=4
Vậy: Số cần tìm là 44731
Bài 3:
Đặt \(B=\overline{4x73y}\)
B chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\)(7)
B chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(8\right)\)
Từ (7) và (8) suy ra y=3
=>\(B=\overline{4x733}\)
B chia 9 dư 4
=>4+x+7+3+3 chia 9 dư 4
=>x+13 chia hết cho 9
mà 0<=x<=9
nên x=5
Vậy: Số cần tìm là 45733
a: Viết được 5 số
b: Gọi số cần tìm là x
Theo đề, ta có: x-1 thuộc B(2) và x-2 thuộc B(3) và x-3 thuộc B(4) và x-4 thuộc B(5)
mà x nhỏ nhất
nên x=59
để 4x2y chia 5 dư 4 thì y=4 hoặc 9
mà 4x2y chia hết 2=>y=4
khi y=4 thì (4+x+2+4) chia hết 3
10+x chia hết 3
=>x=2;5;8
vậy y=4 thì x=2;5;8