Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11
a) 34 và 35
b) 12, 13 và 14
c) 14, 16 và 18
d) 63, 65 và 67
e) 50
3t=3^2+3^3+..+3^100
=>3t-t=(3^2+3^3+..+3^100)-(3+3^2+...+3^99)
=>2t=3^100-3
=>2t+3=3^100-3+3=3^100=(3^2)^50
Mà 2t+3=3^2n=(3^2)^n
=>n=50
vậy n=50
A=3+32+33+...+3100 3A=3(3+32+33+...+3100) 3A=32+33+34+...+3101 3A-A= (32+33+34+...+3101) -(3+32+33+...+3100) 2A=3101-3 =>2A+3=3101-3+3=3101 Vi 2A+3=3n nen 3101=3n =>n=101