K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

A=27^4 + 3^24 + 81^9 = 3^12 + 3^24 + 3^36) = 3^12[1 + 3^12 + (3^12)^2] (*)  

3^12 = 531441 = 14363.37 + 10 = B(37) + 10 kí hiệu B(37) là bội của 37  

Thế vào (*) ta có A = 3^12[ 1 + B(37) + 10 + ( B(37) + 10)^2]

 A = 3^12.[ 1 + B(37) + 10 + ( B(37))^2 + 20.B(37) + 100]  

A = 3^12.[ ( B(37) + ( B(37))^2 + 20.B(37) ) + 111]  

 B(37) + ( B(37))^2 + 20.B(37) ) chia hết 37 và 111 chia hết 37  

=>[( B(37) + ( B(37))^2 + 20.B(37) ) + 111] chia hết 37 => A chia hết cho 37

13 tháng 11 2016
  • 76+75-74  chia het cho 55

Đặt A = 76+75-74  

=> A = 74.( 7+ 7 - 1 )

=> A = 74 . ( 49 + 6 )

=> A = 74 . 55 

=> A chia hết cho 55 

Đặt B = 81+ 27- 9  ( Phần này hơi khó nhưng mình làm giùm bạn theo cách MOD )

Gọi     I = 817

Ta có : 405 = 81 . 5

vì 817 đồng dư với 0 ( Mod 81) => I chia hết cho 81 => I = 81k ( k\(\ne\)0) (1)

Vì 81 đồng dư với 1 ( Mod 5 ) => 817 đồng dư với 17 đồng dư với 1 (Mod 5 )

=> I - 1 chia hết cho 5 ( 2 )

Mà I = 81k (theo 1)

=> I - 1 = 81k -1  ( 3 )

=> I - 1 = 80k + k - 1 

Mà I - 1 Chia hết cho 5 ( theo 2 ) , 80k chia hết cho 5

=> k - 1 chia hết cho 5

Đặt k = 5q + 1 

Thay vào Biểu Thức 3 ta có :

I - 1 = 81 (5q + 1) - 1

=> I = 405q + 81

=> I chia cho 405 dư 81

Gọi 279 là H

Ta có :

279 đồng dư với 0 (Mod 81)

=> H chia Hết 81 => H = 81k ( k\(\ne\)0)

Vì 27 = 327 

Mà 34 đồng dư với 1 theo (mod 5)

 327 = 324 . 27 mà 324 đồng dư với 1 (mod 5) ; 27 chia 5 dư 2

=> 327 đồng dư với 1 . 2 = 2 (mod 5 )

=> H - 2 chia hết cho 5

vì H = 81k 

=> H - 2 = 81k - 2 

=> H - 2 = 80k + k - 2 

Vì H - 2 chia hết cho 5 ; 80k chia hết cho 5 

=> k - 2 chia hết cho 5

Đặt k = 5q + 2 

Thay vào Ta có :

H = 81 ( 5q + 2 )

=> H = 405q + 162

=> H chia 405 dư 162

Ta có :

I + H - 9 đồng dư với 81 + 162 - 9 = 234

Như vậy 81+279-9  không chia hết cho 405 

hay nói cách khác là bài toán bị sai

20 tháng 8 2018

a)

\(7^6+7^5-7^4\)

\(=7^4\cdot\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮55\left(đpcm\right)\)

Mấy câu kia tương tự, dài quá 

10 tháng 7 2016

a./ \(A=81^7-27^9-9^{13}\)

  • A có các số hạng chia hết cho 3 => A chia hết cho 3
  • 81 có chữ số tận cùng là 1; 27= (274)2 có tận cùng là 1 => 279 = 27*278 có tận cùng là 7; 912 = (94)3 có tận cùng là 1 => 913 = 9*912 có tận cùng là 9

=> A có tận cùng là 1 - 7 - 9 = -15 hay tận cùng là 5 => A chia hết cho 5.

A chia hết cho 3 và 5 mà U(3;5) = 1 nên A chia hết cho 3*5 = 15. đpcm

b./ \(\left(x+y\right)^2=\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)đpcm

15 tháng 3 2016

a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)

Ta có: 55 chia hết cho 11 

Nên \(7^4.55\)chia hết cho 11

Hay \(7^6+7^5-7^4\)chia hết cho 11

Câu b,c làm tương tự