Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả
\(A=2.2^{100}+16.2^{100}+5.5^{200}=18.2^{100}+5.25^{100}\\ =23.2^{100}+5.\left(25^{100}-2^{100}\right)\)
Suy ra A chia hết cho 23 nhé!
Lời giải:
Bài 1)
Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)
Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)
Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.
P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.
Câu 2:
a) Câu này hoàn toàn dựa vào tính chất của số chính phương
Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:
\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)
Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên
\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$
Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)
b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$
Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$
Do đó $k\vdots 3$ $(2)$
Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)
a)D=3+3^2+3^3+...+3^2007
=3(1+3+3^2)+...+3^2005(1+3+3^2)
=(3+...+3^2005)*13
Vì 13 chia hết cho 13 nên 13(3+...+3^2005) chia hết cho 13 hay D chia hết cho 13
b)E=7+7^2+...+7^4n
=7(1+7+7^2+7^3)+...+7^4n-3(1+7+7^2+7^3)
=(7+...+7^4n-3)*400
Vì 400 chia hết cho 400 nên (7+...+7^4n-3)*400 chia hết cho 400 hay E chia hết cho 400
a)D=3+3^2+3^3+..........+3^2007
D=(3+3^2+3^3)+....+(3^2005+3^2006+3^2007)
D=3.(1+3+3^2)+....+3^2005.(1+3+3^2)
D=3.13+...+3^2005.13
D=(3+...+3^2005).13 chia hết cho 13
Vậy D chia hết cho 13
A=2+2^2+2^3+...+2^59+2^60(có 60 số hạng)
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)[có 20 nhóm]
A=14*1+2^3*(2+2^2+2^3)+...+2^57*(2+2^2+2^3)
A=14*1+2^3*14+...+2^57*14
A=14*(1+2^3+...+2^57)
A=7*2*(1+2^3+...+2^57) chia hết cho 7(tick nha)
THANK NHÌU NHA