K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

A=(2+2^2)+(2^3+2^4)+........+(2^59+2^60)=(2.1+2.2)+(2^3.1+2^3.2)+...........+(2^59.1+2^59.2)

                                                             =2.(1+2)+2^3.(1+2)+............+2^59.(1+2)

                                                             =2.3+2^3.3+...........2^59.3 chia hết cho 3 suy ra A chia hết cho3

A=(2+2^2+2^3)+(2^4+2^5+2^6)+.........+(2^58+2^59+2^60)=(2.1+2.2+2.2^2)+(2^4.1+2^4.2+2^4.2^2)+....+(2^58.1+2^58.2+2^58.2^2)

                                                                                    =2.(1+2+2^2)+2^4.(1+2+2^2)+.....+2^58.(1+2+2^2)

                                                                                    =2.7+2^4.7+...........+2^58.7 chia hết cho 7 suy ra A chia hết cho 7

câu A chia hết cho 15 bn gộp 4 số hạng lại với nhau nhé, nếu ko biết làm thì nhắn tin hỏi mk, mk giải ra cho

27 tháng 12 2021

a,A=(2+22)+(23+24)+...+(22009+22010)

A=(1+2)(2+23+...+22009)=3(2+...+22009)⋮3

A=(2+22+23)+...+(22008+22009+22010)

A=(1+2+22)(2+...+22008)=7(2+...+22008)⋮7

15 tháng 11 2019

câu a là 1 hàng đẳng thức bạn nhé

Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

b) p^2-1=(p-1)(p+1)

Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2

+ Nếu p:3 dư 1 thì p-1 chia hết cho 3

+ Nếu p:3 dư 2 thì p+1 chia hết cho 3

=> p^2-1 chia hết cho 3.

Do p>3, p NT=> p lẻ=> p=2k+1

Thay vào đc p^2-1=2k(2k+2)

=4k(k+1)

Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2

=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8

Tóm lại p^2-1 chia hết cho 24 do (3,8)=1

2) p^4-1=(p^2-1)(p^2+1)

Theo câu a thì p^2-1 chia hết cho 24

Do p lẻ (p là SNT >3)

=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ

=> p^2+1 chia hết cho 2

=> p^4-1 chia hết cho 48 (đpcm).

16 tháng 11 2017

A=2+22+23+24+....+230

=(2+22+23)+(24+25+26)+...+(228+229+230)

=1(2+22+23)+23(2+22+23)+...+227(2+22+23)

=1.7+23.7+25.7+...+227.7

=7(1+23+25+...+227)

vì 7:7-->A:7

6 tháng 1 2018

\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)

    \(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)

      \(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)

      \(=2.7+2^4.7+...+2^{28}.7\)

      \(=7.\left(2+2^4+...+2^{28}\right)\)

       \(\Rightarrow A⋮7\)

         

11 tháng 11 2019

Ta có

7a + 3b chia hết cho 23 => 6(7a + 3b) = 42a + 18b chia hết cho 23

42a + 18b + 4a + 5b = 46a + 23b = 23(2a + b) chia hết cho 23

Mà 42a+18b chia hết cho 23 nên 4a+5b cũng chia hết cho 23 (dpcm)