Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9
Bài 3
\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)
\(=1+\frac{5}{n+1}\)
Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)
Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)
\(Ư_5=\left\{1;-1;5;-5\right\}\)
* \(n+1=1\Rightarrow n=0\)
* \(n+1=-1\Rightarrow n=-2\)
* \(n+1=5\Rightarrow n=4\)
* \(n+1=-5\Rightarrow n=-6\)
Vậy \(n\in\left\{0;-2;4;-6\right\}\)
Bài 2:
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)