Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
+A= 1+2+2^2 +...+2^196
A= (1+2)+(2^2 +2^3) +...+(2^195 +2^196)
A= 1.3+2^2 .3+...+2^195 .3
A= 3(1+...+2^195)=> A chia hết cho 3
A=1+2+2^2+...+2^195+2^196
A= (1+2+2^2)+...+(2^194 +2^195 +2^196)
A= 1.7 +...+2^194 .7
A=7(1+...+2^194)=> A chia hết cho 7
+ta có : 3^1993 luôn luôn lẻ ;2^157 luôn luôn chan
=> 3^1993 - 2^157 là 1 số lẻ
=> ko chia hết cho 2
A = 2 + 2² + 2³ + ... + 2¹⁰¹¹
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2¹⁰⁰⁹ + 2¹⁰¹⁰ + 2¹⁰¹¹)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2¹⁰⁰⁹.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2¹⁰⁰⁹.7
= 7.(2 + 2⁴ + ... + 2¹⁰⁰⁹) ⋮ 7
⇒ A ⋮ 7
⇒ A - 1 không chia hết cho 7