K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

Nhầm

\(A=1+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)

\(\Rightarrow3^2A=3^2+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow9A-A=\left(9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow8A=9-\frac{1}{3^{100}}\)

=> n = 100

23 tháng 1 2017

Ta có: \(A=1+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)

\(\Rightarrow9A=9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow9A-A=\left(9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow8A=9-\frac{1}{3^{100}}\)

\(\Rightarrow9-\frac{1}{3^{100}}=9-\frac{1}{3^n}\)

\(\Rightarrow\frac{1}{3^{100}}=\frac{1}{3^n}\)

\(\Rightarrow3^{100}=3^n\)

\(\Rightarrow n=100\)

Vậy n = 100