Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$2xy+x-14y=21$
$\Rightarrow x(2y+1)-7(2y+1)=14$
$\Rightarrow (x-7)(2y+1)=14$
Với $x,y$ nguyên thì $x-7, 2y+1$ cũng là số nguyên. Mà $(x-7)(2y+1)=14$ nên $2y+1$ là ước của 14
Mà $2y+1$ lẻ nên $2y+1\in \left\{\pm 1; \pm 7\right\}$
Nếu $2y+1=1\Rightarrow x-7=14$
$\Rightarrow y=0; x=21$
Nếu $2y+1=-1\Rightarrow x-7=-14$
$\Rightarrow y=-1; x=-7$
Nếu $2y+1=7\Rightarrow x-7=2$
$\Rightarrow y=3; x=9$
Nếu $2y+1=-7\Rightarrow x-7=-2$
$\Rightarrow y=-4; x=-5$
Bài 2:
\(A=\underbrace{111...1}_{2014}=10^{2013}+10^{2012}+...+10+1\)
\(=(1+10)+(10^2+10^3)+(10^4+10^5)+...+(10^{2012}+10^{2013})\\ =(1+10)+10^2(1+10)+10^4(1+10)+....+10^{2012}(1+10)\\ =(1+10)(1+10^2+10^4+...+10^{2012})\ =11(1+10^2+10^4+...+1)^{2012})\)
$\Rightarrow A$ là hợp số.
câu a) 111....1 (2019 số 1) chia hết cho 11 vì có các chữ số giống nhau
câu b) tương tự nha
c) 1112111 chia hết cho 11011 ( dựa vào dấu hiệu nhận biết của các chữ số )
d) tương tự
câu a,b đều chia hết cho 1, 11 và chính nó => hợp số
câu c chia hết cho 101 còn câu d chia hết chi 1111=> hợp số
câu e) -.- đang tắc
là hợp số vì nó chia hết cho 1;111...111;11 nhiêu đó cũng đủ k luận nhưng mik nghĩ là vẫn còn
M = 111...111 (2004 chữ số 1)
=> M = 1 x 2004 = 2004
Vì M = 2004 nên M chia hết cho 2
Mà 2004 > 2
Nên M là hợp số.
Chúc bạn học tốt!
Trả lời:
A=111.1111 (2014 chữ số 1) = 11x (101010.....01)
=> A mod 11 =0
Vậy A là hợp số