Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=1+2+2^2+2^3+...+2^{100}\)
=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)
=> \(A=2A-A=2^{101}-1\)
=> \(A+1=2^{101}\)
b, \(B=3+3^2+3^3+...+3^{2005}\)
\(3A=3^2+3^3+3^4+....+3^{2006}\)
=> \(2A=3A-A=3^{2006}-3\)
=> \(2A+3=3^{2006}\)là lũy thừa của 3
=> Đpcm
a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)
Lấy 2A-A ta có:
\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(\Rightarrow A+1=2^{101}-1+1\)
\(\Rightarrow A+1=2^{101}\)
b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)
\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)
\(\Rightarrow2B=3^{2006}-3\)
\(\Rightarrow2B+3=3^{2006}-3+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3 ĐPCM
A=50+51+...+599
=>5A=5+52+53+...+5100
=>5A-A=4A=(5+52+...+5100)-(50+51+...+599)=5100-1
=>4A+1=5100
3A=3+32+33+....+32008
2A=(3+32+....+32008)-(1+3+...+32007)=32008-1
3A=\(3+3^2+3^3+...+3^{11}\)
3A-A=(\(3+3^2+3^3+...+3^{11}\))-(\(1+3+3^2+...+3^{10}\))
2A=\(3^{11}-1\)
2A+1=\(3^{11}\)
\(A=1+3+3^2+...+3^{2007}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)
\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)
\(\Rightarrow2A=3^{2008}-1\)
\(\Rightarrow2A+1=3^{2008}\)
\(A=1+3+3^2+...+3^{2007}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)
\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)
\(\Rightarrow2A=3^{2008}-1\)
\(\Rightarrow2A+1=3^{2008}\)
Nhớ k cho mk nha!!!
Ta có:\(A=1+3+3^2+3^3+3^4+3^5\)
\(\Rightarrow2A=1+3^2+3^3+3^4+3^5+3^6\)
\(\Rightarrow2A+1=1+3^2+3^3+3^4+3^5+3^6\)+1
\(2A+1=2+3^2+3^3+3^4+3^5+3^6\)
Nhớ chọn cho mình nhé,mình sẽ ủng hộ cho
A = 1+ 3\(^2\) + \(3^3\)+ ....+ \(3^5\)
\(\Leftrightarrow\)3A = 3+ \(3^2\)+\(3^3\)+...+\(3^6\)
\(\Leftrightarrow\)3A _ A = (3 + \(3^2\)+....+\(3^6\)) _ (1+ 3 +... +\(3^5\))
\(\Leftrightarrow\)2A = \(3^6\) _ 1
\(\Leftrightarrow\)2A +1 = \(3^6\)( dạng lũy thừa bậc 6 )
A=1+2+2^2+....+2^100
2A= 2+2^2+2^3+....+2^101
A=2A-A=(2+2^2+2^3+...+2^101)-(1+2+2^2+...+2^100)
=>A=2^101-1
=>A+1=2^101
Vậy A+1 là một lũy thừa của 2.
A = 1 + 2 + 2^2 + ... + 2^100
2A = 2 + 2^2 + 2^3 + ... + 2^101
2A - A = ( 2+ 2^2+ 2^3 + ... + 2^101 ) - ( 1+ 2 + 2^2 + ... + 2^100)
A = 2^101 - 1
A + 1 = 2^101