K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2019

\(S=\frac{a^2}{a+ab}+\frac{b^2}{b+ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+2ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+\frac{\left(a+b\right)^2}{2}}+\frac{1}{a+b}\ge\frac{1}{1+\frac{1}{2}}+1=\frac{5}{3}\)

\(\Rightarrow S_{min}=\frac{5}{3}\) khi \(a=b=\frac{1}{2}\)

31 tháng 5 2018

Ta thấy: \(a+b\le1\Leftrightarrow\hept{\begin{cases}a\le1-b\\b\le1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a\le2-b\\1+b\le2-a\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b}\ge\frac{a}{2-a}\\\frac{b}{1+a}\ge\frac{b}{2-b}\end{cases}}\Rightarrow\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{a}{2-a}+\frac{b}{2-b}\)

\(\Rightarrow S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\ge\frac{a}{2-a}+\frac{b}{2-b}+\frac{1}{a+b}\)

\(=\frac{2}{2-a}-1+\frac{2}{2-b}-1+\frac{1}{a+b}=\frac{2}{2-a}+\frac{2}{2-b}+\frac{1}{a+b}-2\)

\(=2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\)

Áp dụng bất đẳng thức sau: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{4-\left(a+b\right)+2\left(a+b\right)}=\frac{9}{4+a+b}\)

Lại có: \(a+b\le1\Rightarrow4+a+b\le5\Rightarrow\frac{9}{4+a+b}\ge\frac{9}{5}\)

\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{5}\Leftrightarrow2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\ge\frac{8}{5}\)

\(\Rightarrow S\ge\frac{8}{5}.\)

Vậy \(Min_S=\frac{8}{5}.\)Dấu "=" xảy ra khi \(a=b=\frac{2}{5}.\)

1 tháng 9 2020

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a}{1+b}+\frac{4}{9}.a\left(1+b\right)\ge2\sqrt{\frac{a.4.a.\left(1+b\right)}{\left(1+b\right)9}}=2\sqrt{\frac{4a^2}{3^2}}=\frac{4a}{3}\)

\(\frac{b}{1+a}+\frac{4}{9}.b\left(1+a\right)\ge2\sqrt{\frac{b.4.b.\left(1+a\right)}{\left(1+a\right)9}}=2\sqrt{\frac{2^2b^2}{3^2}}=\frac{4b}{3}\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{4}{9}.a\left(1+b\right)+\frac{4}{9}.b\left(1+a\right)\ge\frac{4a}{3}+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{4a}{3}-\frac{4}{9}\left(a+ab\right)-\frac{4}{9}\left(b+ab\right)+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{8a}{9}+\frac{8b}{9}-\frac{4}{9}ab-\frac{4}{9}ab\)

\(< =>S\ge\frac{1}{a+b}+\frac{8}{9}\left(a+b\right)-\frac{8}{9}ab=\left(\frac{1}{a+b}+a+b\right)-\frac{a+b+8ab}{9}\)

\(< =>S\ge2-\frac{a+b+8ab}{9}\)

Do \(4ab\le\left(a+b\right)^2\le1< =>a+b+8ab\le3\)

Khi đó ta được : \(S\ge2-\frac{3}{9}=2-\frac{1}{3}=\frac{5}{3}\).Đẳng thức xảy ra \(< =>a=b=\frac{1}{2}\)

Vậy GTNN của \(S=\frac{5}{3}\)đạt được khi \(a=b=\frac{1}{2}\)

22 tháng 9 2017

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

22 tháng 9 2017

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

8 tháng 7 2017

thiếu đề bn ơi: a+b+c=?

28 tháng 7 2017

HIHI viết thiếu nhưng mk ra rồi cảm ơn ạ !

16 tháng 11 2018

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

16 tháng 11 2018

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

14 tháng 5 2021

\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)

( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )

Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )

\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)

Dấu "=" xảy ra <=> a=b=1/2 

Vậy ...