K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Sai đề :>

10 tháng 8 2016

a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)

\(=\left(2a-3b\right)\cdot9b^2\)

 

 

10 tháng 8 2016

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)

= ...........

24 tháng 7 2017

a, \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)

\(=\left(2a-3b\right)\left[\left(2a\right)^2+2a.3b+\left(3b\right)^2\right]-2a\left(2a-3b\right)\left(2a+3b\right)\)

\(=\left(2a-3b\right)\left[4a^2+6ab+9b^2-2a\left(2a+3b\right)\right]\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)

\(=\left(2a-3b\right).9b^2\)

b, \(\left(x^3-y^3\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left[\left(x^2+xy+y^2\right)+\left(x-y\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+x-y\right)\)

c, \(\left(m^3+n^3\right)+\left(m+n\right)^2\)

\(=\left(m+n\right)\left(m^2-mn+n^2\right)+\left(m+n\right)^2\)

\(=\left(m+n\right)\left(m^2-mn+n^2+m+n\right)\)

Chúc bạn học tốt!!!

11 tháng 8 2016

\(b,=1^2-\left(x-y\right)^2=\left(1+x-y\right)\left(1-x+y\right)\)

11 tháng 8 2016

\(c,=\left(x^2+1\right)^2-\left(2x\right)^2=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)^2\left(x-1\right)^2\)

8 tháng 9 2017

x9 + 1
= (x3)3 + 13
= (x3 + 1)(x6 - x3 + 1)
= (x + 1)(x2 - x + 1)(x6 - x3 +1)

8a3 - 12a2 + 6a - 1
= (2a)3 - 3(2a)21 + 3 . 2a . 12 - 1
= (2a - 1)3

27a3 - 54a2b + 36ab2 - 8b3
= (3a)3 - 3(3a)22b + 3 . 3a . (2b)2 - (2b)3
= (3a - 2b)3

10 tháng 7 2018

a,8a-8a2+3

=-8(a2-a)+3

=-8[a2-2a\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)-\(\dfrac{1}{4}\)]+3

=-8[(a-\(\dfrac{1}{2}\))2-\(\dfrac{1}{4}\)]+3

=-8(a-\(\dfrac{1}{2}\))2+2+3

=-8(a-\(\dfrac{1}{2}\))2+5

mà (a-\(\dfrac{1}{2}\))2\(\ge\)0

=>-8(a-\(\dfrac{1}{2}\))2\(\le\)0

=>-8(a-\(\dfrac{1}{2}\))2+5\(\le\)5

=> Gía trị lớn nhất biểu thức trên đạt được là 5( khi (a-\(\dfrac{1}{2}\))2=0\(\Leftrightarrow\)a=\(\dfrac{1}{2}\))