K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Bài này áp dụng đồng nhất hệ số nhé .

Ta có : 5x - 1 = mx + n 

\(\Rightarrow\)m = 5 và n = - 1

22 tháng 12 2016

\(a=15x^3+x^2-mx+n\)

\(=5x\left(x^2+2x-1\right)-3\left(3x^2+2x-1\right)-\left(m-1\right)x-3+n\)

\(\frac{a}{3x^2+2x-1}=5x-3-\frac{\left(m-1\right)x+\left(3-n\right)}{3x^2+2x-1}\)

=> để chia hết : m=1; n=3

25 tháng 10 2016

help me! 

30 tháng 10 2016

Tìm m để

a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)

b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)

22 tháng 10 2019

cách 2 nếu chưa học bezout

x^3 +mx+n x-1 x^2+x+(m+1) x^3-x^2 - x^2+mx+n x^2-x - (m+1)x+n (m+1)x-(m+1) - n+m+1

Mà \(A\left(x\right):\left(x-1\right)\)dư 4\(\Rightarrow m+n+1=4\)

                                                 \(\Rightarrow m+n=3\left(1\right)\)

x^3 +mx+n x+1 x^2-x+(m+1) x^3+x^2 - -x^2+mx+n -x^2-x - (m+1)x+n (m+1)x+(m+1) - n-m-1

Mà \(A\left(x\right):\left(x+1\right)\)dư 6\(\Rightarrow n-m-1=6\)

                                               \(\Rightarrow n-m=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}n+m=3\\n-m=7\end{cases}\Rightarrow\hept{\begin{cases}n=5\\m=-2\end{cases}}}\)

Vậy n=5 và m=-2

22 tháng 10 2019

Áp dụng định lý Bezout ta có:

\(A\left(x\right)\)chia x-1 dư 4 \(\Rightarrow A\left(1\right)=4\)

                                    \(\Rightarrow1+m+n=4\)

                                     \(\Rightarrow m+n=3\left(1\right)\)

\(A\left(x\right)\)chia x+1 dư 6 \(\Rightarrow A\left(-1\right)=6\)

                                       \(\Rightarrow-1-m+n=6\)

                                      \(\Rightarrow-m+n=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}m+n=3\\-m+n=7\end{cases}\Rightarrow}\hept{\begin{cases}n=5\\m=-2\end{cases}}\)

Vậy n=5 và m=-2 

22 tháng 3 2016

có 2x-1=0=> x=1/2

thay x=1/2 vào p(x) ta có 1/4m-19/8=0=>1/4m=19/8=>m=19/2 

đảm bảo đúng đó bạn

26 tháng 10 2023

a: Q=M+N

\(=5x^2y+5x+3-3xy^2z+xy^2z-4x^2y+5x-5\)

\(=x^2y+10x-2-2xy^2z\)

\(P=M-N\)

\(=5x^2y+5x+3-3xy^2z-xy^2z+4x^2y-5x+5\)

\(=9x^2y+8-4xy^2z\)

H=N-M

=-(M-N)

\(=-9x^2y-8+4xy^2z\)

b: \(Q=x^2y+10x-2-2xy^2z\)

=>Q có bậc là 4

\(P=9x^2y+8-4xy^2z\)

=>P có bậc là 4

\(H=-9x^2y-8+4xy^2z\)

=>H có bậc là 4

c: Khi x=-1;y=3;z=-2 thì

\(Q=\left(-1\right)^2\cdot3+10\cdot\left(-1\right)-2-2\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=3-10-2+2\cdot9\cdot\left(-2\right)\)

\(=-9-36=-45\)

Khi x=-1;y=3;z=-2 thì \(P=9\cdot\left(-1\right)^2\cdot3+8-4\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=27+8+4\cdot9\cdot\left(-2\right)\)

\(=35-72=-37\)

H=-P

=>H=37