Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 = 82
b2 = 172
c2 = 52
d2 = 32
e2 = 82
*Ý kiến riêng mong đc k
*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại
100% đúng nha bạn
Mik đã đi hỏi cô và cô bảo đúng :)
cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50
⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150
<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)
⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau
Giả sử trong 2016 số này khác nhau từng đôi 1 ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{7}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\)(2009 số \(\frac{1}{8}\))
\(=1+\frac{1}{2}+...+\frac{1}{7}+\frac{2009}{8}\)
\(=\frac{363}{140}+\frac{2009}{8}\approx253,72< 300\)
Vậy trong 2016 số đã cho tồn tại ít nhất 2 số bằng nhau
Có vẻ thiếu cái gì đó. khi có hai số bằng nhau rồi. g/s là a2015=a2016
Liệu P trình : 1/a1+...+1/a2015=B có tồn tại Nghiệm nguyên
Ta có :
\(1=1\)
\(\frac{1}{2^2}< \frac{1}{1\times2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
........................................................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
Cộng tất cả lại ta có :
\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}=2-\frac{1}{n}\)với \(\forall n\)
Nếu chọn ra 5 số a,b,c,d,e khác nhau bất kỳ trong các số từ 1 đến n thì
\(\Rightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}< 2\)
Mà theo giả thiết :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}=2\)
⇒ có ít nhất 2 trong 5 số a;b;c;d;e bằng nhau
giúp mình câu này với!!!