K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Theo đề bài ta có :

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-4ab-ab+b^2=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)(1)

Vì \(2a>b>0\)

\(\Rightarrow4a-b\ne0\)

Từ điều (1)

\(\Rightarrow a-b=0\)

\(\Leftrightarrow a=b\)

Thay a=b vào P ta có :

\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)( vì \(a\ne0\))

Vậy phân thức P có số trị là 1/3 .

Ta có:

\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow4a=b\)

\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)

\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)

26 tháng 9 2021

\(4a^2+b^2=5ab\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow b=4a\left(do.a\ne b\right)\)

\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)

20 tháng 1 2019

=>4a^2-5ab+b^2=0

=>(a-b)(4a-b)=0

=>a=b hoặc b=4a(loại)

=>P=b^2/3b^2=1/3

2 tháng 12 2016

Từ \(4a^2+b^2=5ab,\)ta có : \(4a^2-4ab-ab+b^2=0\)

Hay \(\left(a-b\right)\left(4a-b\right)=0\left(.\right)\)

\(2a>b>0\) nên \(4a-b\ne0.\)

Từ \(\left(.\right)\Rightarrow a-b=0\). Tức là \(a=b.\)

Thay \(a=b\) vào \(P\) ta được :

\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\) ( do \(a\ne0\)).

8 tháng 2 2017

Từ \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\)

\(\Rightarrow4a^2-ab-4ab+b^2=0\)

\(\Rightarrow a\left(4a-b\right)-b\left(4a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Rightarrow}\orbr{\begin{cases}a=b\\a=\frac{b}{4}\end{cases}}\)

*)Xét \(a=b\) thì \(F=\frac{b^2}{4b^2-b^2}=\frac{b^2}{3b^2}=\frac{1}{3}\)

*)Xét \(a=\frac{b}{4}\) thì \(F=\frac{\frac{b^2}{4}}{\frac{b^2}{4}-b^2}=-\frac{1}{3}\)

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

4a2+b2=5ab<=>(4a-b)(a-b)=0

TH1 4a-b=0<=>4a=b

=> \(P=\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)

TH2 a-b=0

=> \(P=\frac{a^2}{3a^2}=\frac{1}{3}\)

1 tháng 12 2018

Ta có : \(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-4ab-ab+b^2=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)  (1)

Vì  \(2a>b>0\)

\(\Rightarrow4a-b\ne0\)

Từ (1)  \(\Rightarrow a-b=0\)

\(\Rightarrow a=b\)

Thay a hoặc b vào biểu thức P ta có :

\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)  ( a  khác 0 )

28 tháng 1 2023

\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2\)

\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)

\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)

\(TH2:\) \(a-b=0\)

\(\Rightarrow a=b\)

\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)

\(\Rightarrow A=\dfrac{1}{3}\)

20 tháng 12 2018

4a^2 + b^2=5ab 
<=>4a^2 + b^2 - 5ab=0 
<=>4a(a - b) - b(a - b)=0 
<=> (a -b )(4a - b)=0 
<=>a-b=0 ; a=b hoặc 4a - b=0 ; a=b/4(loại) 

đề lúc đầu sai :v 

ĐKXĐ : \(2a\ne b\)\(;\)\(2a\ne-b\)

\(4a^2+b^2=5ab\)\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}}\)

+) Với \(a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)

+) Với \(4a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a.4a}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)

... 

20 tháng 12 2018

Ta có: \(4a^2+b^2=5ab\)

\(\Leftrightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\).Mà \(2a>b>0\Rightarrow4a>b>0\Rightarrow4a-b>0\)

Do đó \(a-b=0\Leftrightarrow a=b\)

Thay b bởi a,ta có: \(M=\frac{ab}{2a^2-b^2}=\frac{a^2}{2a^2-a^2}=\frac{a^2}{a^2}=1\)