K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

4 x 2 – 25 – (2x + 7)(5 – 2x)

= ( 2 x ) 2   –   5 2 – (2x + 7)(5 – 2x)

= (2x – 5)(2x + 5) – (2x + 7)(5 – 2x)

= (2x- 5)(2x + 5) + (2x + 7)(2x – 5)

= (2x – 5)(2x + 5 + 2x + 7)

= (2x – 5)(4x + 12)

Biểu thức cần điền là 4x + 12

Đáp án cần chọn là: D

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

5 tháng 4 2022

`Answer:`

Bài 1:

a) \(7+2x=22-3x\)

\(\Leftrightarrow2x+3x=22-7\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

b) \(8x-3=5x+12\)

\(\Leftrightarrow8x-5x=12+3\)

\(\Leftrightarrow3x=15\)

\(\Leftrightarrow x=5\)

c) \(x-12+4x=25+2x-1\)

\(\Leftrightarrow x-12+4x-25-2x+1=0\)

\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)

\(\Leftrightarrow3x-36=0\)

\(\Leftrightarrow x=12\)

d) \(x+2x+3x-19=3x+5\)

\(\Leftrightarrow6x-19=3x+5\)

\(\Leftrightarrow6x-3x=5+19\)

\(\Leftrightarrow3x=24\)

\(\Leftrightarrow x=8\)

Bài 2:

a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)

b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)

\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)

d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)

\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow x^2-5x-2x+10=0\)

\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)

28 tháng 1 2021

a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)

\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)

\(\Leftrightarrow156-56x=24x-324\)

\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)

b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)

\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)

\(\Leftrightarrow7x+37=11x-35\)

\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)

28 tháng 1 2021

c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-2x-1=12x-5\)

\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)

d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)

\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)

\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)

\(\Leftrightarrow5x+33x-18-182=0\)

\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)

11 tháng 9 2021

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

10 tháng 9 2021

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

10 tháng 9 2021

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

6 tháng 4 2020

\(a.7+2x=22-3x\\\Leftrightarrow 5x=15\\ \Leftrightarrow x=3\)

Vậy nghiệm của phương trình trên là \(3\)

\(b.8x-3=5x+12\\ \Leftrightarrow3x=15\\\Leftrightarrow x=5\)

Vậy nghiệm của phương trình trên là \(5\)

\(c.x-12+4x=25+2x-1\\ \Leftrightarrow5x-2x=12+24\\ \Leftrightarrow3x=36\\\Leftrightarrow x=12\)

Vậy nghiệm của phương trình trên là \(12\)

\(d.x+2x+3x-19=3x+5\\\Leftrightarrow 6x-3x=19+5\\\Leftrightarrow 3x=24\\ \Leftrightarrow x=8\)

Vậy nghiệm của phương trình trên là \(8\)

\(e.7-\left(2x+4\right)=-\left(x+4\right)\\ \Leftrightarrow7-2x-4=-x-4\\ \Leftrightarrow-2x+x=-3-4\\ \Leftrightarrow-x=-7\\ \Leftrightarrow x=7\)

Vậy nghiệm của phương trình trên là \(7\)

\(f.\left(x-1\right)-\left(2x-1\right)=9-x\\ \Leftrightarrow x-1-2x+1=9-x\\ \Leftrightarrow-x+x=9\\ \Leftrightarrow0x=9\)

\(\Rightarrow\) Vô nghiệm

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

7 tháng 12 2019

d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)