\(athì \(77">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

14 tháng 6 2019

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)

28 tháng 4 2016

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}=\frac{\sqrt{x}+5-10}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)

\(A< \frac{1}{3}=>1-\frac{10}{\sqrt{x}+5}< \frac{1}{3}\)

\(=>1-\frac{1}{3}< \frac{10}{\sqrt{x}+5}=>\frac{2}{3}< \frac{10}{\sqrt{x}+5}\)

\(=>2.\left(\sqrt{x}+5\right)< 30=>2\sqrt{x}+10< 30=>2\sqrt{x}< 20\)

\(=>\sqrt{x}< 10=>\left(\sqrt{x}\right)^2< 10^2=>x< 100\)

Vậy x<100 thì A<1/3

4 tháng 2 2016

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
20 tháng 2 2017

Giải:

\(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)

Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)

Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:

Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)

Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)

Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)

Chứng minh hoàn tất

Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.

20 tháng 2 2017

vao cau hoi hay OLM itm

19 tháng 3 2016

\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

=> a = 1; b = 2; c = 3; d = 4.

limdim

19 tháng 3 2016

giúp mik đi,các bạnhihi

3 tháng 4 2016

Câu hỏi nài có trên OLM  rồi .

19 tháng 4 2016

Sai Đề

19 tháng 4 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)..................\left(1-\frac{1}{20}\right)\)

=\(\frac{1}{2}.\frac{2}{3}.............\frac{19}{20}\) 

=\(\frac{1.2.3..............19}{2.3.4..............20}\) 

=\(\frac{1}{20}\)