K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

Vì  \(n^2-n=n\left(n-1\right)\)  luôn là số chẵn với mọi  số nguyên  \(n\)

nên do đó,  \(a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\)  là số chẵn  \(\left(1\right)\)

Mà  \(a^2+b^2=c^2+d^2\)  (theo giả thiết)

nên  \(a^2+b^2+c^2+d^2=2\left(a^2+b^2\right)\)  là một số chẵn \(\left(2\right)\) (do tích trên chia hết cho  \(2\))  

\(\left(1\right)\)  và  \(\left(2\right)\)  suy ra  \(a+b+c+d\)  là một số chẵn

Vậy,   \(a+b+c+d\)  luôn là hợp số với  \(a,b,c,d\in Z^+\)

26 tháng 2 2023

29 tháng 6 2021

12632t54s jsd

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

11 tháng 7 2023

\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).

Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)