K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

Giải: Ta có : 

\(\frac{a+b+c-2011d}{d}=\frac{b+c+d-2011a}{a}=\frac{c+d+a-2011b}{b}=\frac{d+a+b-2011c}{c}\)

=> \(\frac{a+b+c}{d}-2011=\frac{b+c+d}{a}-2011=\frac{c+d+a}{b}-2011=\frac{d+a+b}{c}-2011\)

=> \(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}\)

=> \(\frac{a+b+c}{d}+1=\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1\)

=> \(\frac{a+b+c+d}{d}=\frac{b+c+d+a}{a}=\frac{c+d+a+b}{b}=\frac{d+a+b+c}{c}\)

TH1: a + b + c + d = 0

=> a + b = -(c + d)

    b + c = -(a + d)

 khi đó, ta có : S = \(\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}\)

                          = \(-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

                          = -4

TH2 : a + b + c + d \(\ne\)0

=> a = b = c = d

khi đó, ta có : S = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}\)

                          =   1 + 1 + 1 + 1 

                         = 4