Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức tìm số đường thẳng phân biệt khi biết số giao điểm, gọi số giao điểm là n, ta có:
Số đường thẳng phân biệt tạo được\(=1+...+\left(n-1\right)\)
Vậy từ bài toán ta được: \(1+2+...+\left(n-1\right)=8\)
\(\Rightarrow\left[1+\left(n-1\right)\right]\cdot\frac{\left(n-1\right)}{2}=8\)
\(\Rightarrow\left(1+n-1\right)\left(n-1\right):2=8\)
\(\Rightarrow n\cdot\left(n-1\right):2=8\)
\(\Rightarrow n\cdot\left(n-1\right)=16\)
+ Tổng số điểm phân biệt là: 4 + 5 + 6 + 7 + 1 = 23 điểm. Qua 2 điểm
vẽ được 1 đường thẳng nên ta có 23. 22 : 2 = 253 đường thẳng.
0,25
+ Mặt khác số các điểm thẳng hàng là 5;6;7;8 nên số các đường thẳng
trùng nhau là 10,15,21,28. Số đường thẳng cần tìm là: 253 - 10 - 15 -
0,25
21 - 28 + 4 = 183 đường thẳng
Trên 4 đường thẳng xx' ; yy' ; zz' và tt' có số điểm phân biệt tương ứng là 5, 6, 7, 8 => Số tia lần lượt tương ứng là 10, 12, 14, 16 => Tổng số tia cần tìm là 10 + 12 + 14 + 16 = 52 tia.
Tổng số điểm phân biệt là : 4 + 5 + 6 + 7 + 1 = 23 điểm. Qua 2 điểm ta vẽ được 1 đường thẳng nên ta có 23 . 22 : 2 = 253 đường thẳng.
Mặt khác số các điểm thẳng hàng là 5, 6, 7, 8 nên số các đường thẳng trùng nhau là 10, 15, 21, 28. Số đường thẳng cần tìm là : 253 - 10 - 15 - 21 - 28 + 4 = 183 đường thẳng.
8
4 đường thẳng phân biẹt cắt nhau tại O sẽ tạo ra 8 tia gốc O.
Cứ lấy 1 tia này ghép với 7 tia còn lại ta được 7 góc.
Mà có 8 tia như vậy nên có:
7*8=56(góc)
Nhưng mỗi góc được tính 2 lần nên thực tế chỉ có
56:2=28(góc)