Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để ý rằng 1 < a < b < c nên log a b > 1. Khi đó nếu xét cùng các cơ số a và b thì
log a log a b > log b log a b > 0
Do 1 < a < b < c nên
log c a < 1 ⇒ 0 > log c log c a > log b log c a
Từ đó suy ra
log a log a b + log b log b c + log c log c a > log b log a b . log b c . log c a = log b 1 = 0
Đáp án A
Đáp án A
Phương trình mặt phẳng (ABC) là x 1 + y 3 + z 2 = 1 mà D 1 ; 3 ; - 2 ⇒ D ∈ A B C .
Và ta thấy rằng A C ¯ = - 1 ; 0 ; 2 và B D ¯ = - 1 ; 0 ; 2 suy ra ABCD là hình bình hành.
Vậy O.ABCD là một hình chóp có đáy là hình bình hành, do đó có 5 mặt phẳng thỏa mãn yêu cầu gồm:
Mặt phẳng đi qua trung điểm của AC,BD và song song với (SAD) hoặc (SBC).
Mặt phẳng đi qua trung điểm cuả AD,BC đồng thời song song với (SAC) hoặc (SBD).
Mặt phẳng đi qua trungđiểm của OA,OB,OC,OD.
Chọn đáp án B.