K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Đặt: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2=\)

\(S=a^3-a+b^3-b+c^3-c+3a^2-3a+3b^2-3b+3c^2-3c+4\cdot\left(a+b+c\right)\)

Ta có: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.

Tương tự b3 - b và c3 - c cũng chia hết cho 6. (1).

Mặt khác, \(3a^2-3a=3a\left(a-1\right)\)chia hết cho 3 mà a(a-1) là tích 2 số tự nhiên liên tiếp => a(a-1) chia hết cho 2. Do đó 3a(a-1) chia hết cho 6 => 3a2 - 3a chia hết cho 6. Tương tự, 3b2 - 3b; 3c2 - 3c cũng chia hết cho 6. (2)

Theo đề bài thì a+b+c chia hết cho 3 nên 4*(a+b+c) chia hết cho 6 (3)

Từ (1); (2); (3) suy ra S là tổng các số chia hết cho 6 nên S chia hết cho 6. đpcm