K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Đặt: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2=\)

\(S=a^3-a+b^3-b+c^3-c+3a^2-3a+3b^2-3b+3c^2-3c+4\cdot\left(a+b+c\right)\)

Ta có: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.

Tương tự b3 - b và c3 - c cũng chia hết cho 6. (1).

Mặt khác, \(3a^2-3a=3a\left(a-1\right)\)chia hết cho 3 mà a(a-1) là tích 2 số tự nhiên liên tiếp => a(a-1) chia hết cho 2. Do đó 3a(a-1) chia hết cho 6 => 3a2 - 3a chia hết cho 6. Tương tự, 3b2 - 3b; 3c2 - 3c cũng chia hết cho 6. (2)

Theo đề bài thì a+b+c chia hết cho 3 nên 4*(a+b+c) chia hết cho 6 (3)

Từ (1); (2); (3) suy ra S là tổng các số chia hết cho 6 nên S chia hết cho 6. đpcm

15 tháng 2 2017

Ta có: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(3a^2-3a\right)+\left(3b^2-3b\right)+\left(3c^2-3c\right)+4\left(a+b+c\right)\)

\(=a\left(a+1\right)\left(a-1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)+3a\left(a-1\right)+3b\left(b-1\right)+3c\left(c-1\right)+4\left(a+b+c\right)\)

Ta thấy: \(\hept{\begin{cases}a\left(a-1\right)\left(a+1\right)⋮6\\b\left(b-1\right)\left(b+1\right)⋮6\\c\left(c-1\right)\left(c+1\right)⋮6\end{cases}}\)(1)

\(\hept{\begin{cases}3a\left(a-1\right)⋮6\\3b\left(b-1\right)⋮6\\3c\left(c-1\right)⋮6\end{cases}}\)(2)

\(4\left(a+b+c\right)⋮6\)(3)

Từ (1),(2),(3) ta suy ra \(S⋮6\)

16 tháng 3 2015

1 a) Bạn nhẩm nghiệm ra a = 1 thỏa mãn pt

Phân tích như sau : a^3 - a^2 + 3a^2 - 3a - 10a + 10 = (a-1)(a^2 + 3a - 10) = (a-1)(a+5)(a-2)

16 tháng 3 2015

1 b) Dùng hằng đẳng thức a^2 - b^2 = (a-b)(a+b). Chứng minh ư ? Phá ngoặc ra đúng ngay :)

=(a^2 + 4b^2 - 5)^2 - (4ab+4)^2    (đưa 16 vào trong bình phương đó)

=(a^2 + 4b^2 - 4ab - 4 - 5)(a^2 + 4b^2 + 4ab +4 - 5)

Dùng tiếp hằng đẳng thức (a+b)^2 = a^2 + b^2 +2ab

=[(a-2b)^2 - 9] [(a+2b)^2 - 1]

Dùng 1 lần nửa hằng đẳng thức đầu tiên

=(a-2b-3)(a-2b+3)(a+2b-1)(a+2b+1)

21 tháng 10 2019

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

11 tháng 2 2018

Bổ sung phần chia hết cho 2 này:

\(a^3+3a^2\)

\(=a^2\left(a+3\right)\)

Xét a chẵn và a lẻ

\(\Rightarrow a^3+3a^2⋮2\)

Tương tự \(b^3+3b^2⋮2\)

                \(c^3+3c^2⋮3\)

10 tháng 2 2018

ta có A=\(a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3abc\)

=\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc+3\left(a^2+b^2+c^2\right)⋮3\left(\forall a+b+c⋮3\right)\)

^_^