Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)5(x^2-1)+x(1-5x)= x-2
<=>5x2-5+x-5x2=x-2
<=>-5+x=x-2
<=>x-x=-2+5
<=>0x=3(vô lí)
vậy ko tìm được x
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)
1) Từ \(x+y+z=6\) và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)
Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.
Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm
Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)
-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9
Vậy mệnh đề đúng với n=1
-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó, \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1
Ta phải cm mệnh đề cũng đúng với k+1:
Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)
<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)
Ta thấy:
\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.
Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3
-1 chia 9 dư -1
Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9
Kết luận: Mệnh đề đúng với mọi n thuộc Z