K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Về ý tưởng để làm thì chẳng có gì khác, chẳng qua bạn làm vắn tắt tuyệt đối nên nó mới thành 3 dòng :)))))

8 tháng 5 2019

da nhung cach phan tich cua co hop li hon cach cua em nhieu

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7

19 tháng 4 2020

bđt tương đường với:

\(\left(a+b+c\right)\left(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{a+c}\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge2\left(ab+bc+ca\right)\)

Mật khác theo BĐT Cauchy-Schwart ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

Vậy để cm bài toán ta cần chứng minh được

\(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)

Đây chính là BĐT Schur dang phân thức. Bài toán được chứng minh

Đẳng thức xảy ra khi a=b=c và a=b=c=0 và hoán vị

19 tháng 4 2020

Em xin lỗi cô và các bạn! Em giải lại ạ

Giải

Biến đổi tương đương BĐT như sau:

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\frac{c\left(a^2+b^2\right)}{a+b}+\frac{a\left(b^2+c^2\right)}{b+c}+\frac{b\left(c^2+a^2\right)}{a+c}\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{c\left[\left(a+b\right)^2-2ab\right]}{a+b}+\frac{a\left[\left(b+c\right)^2-2bc\right]}{b+c}+\frac{b\left[\left(c+a\right)^2-2ca\right]}{c+a}\le a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\le a^2+b^2+c^2+abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Theo BĐT dang \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\), ta được

\(a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

Ta cần chỉ ra được \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\), BĐT này tương đương với

\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)

BĐT trên là hệ quả của BĐT Schur

Dấu "=" xảy ra <=> a=b=c

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

10 tháng 3 2020

a )

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(b^2+\left(c+a\right)^2\right)\left(1+\right)\ge\left(b+2\left(a+c\right)\right)^2\)

\(\Rightarrow\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}\le\sqrt{5}.\frac{a}{b+2c+2a}\)

\(\Rightarrow VT\le\sqrt{5}.\left(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\right)\)

Cần chứng minh : \(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\le\frac{3}{5}\)

\(\Leftrightarrow\left(\frac{1}{2}-\frac{a}{b+2c+2a}\right)+\left(\frac{1}{2}-\frac{b}{c+2a+2b}\right)+\left(\frac{1}{2}-\frac{c}{a+2b+2c}\right)\ge\frac{9}{10}\)

\(\Leftrightarrow\frac{b+2c}{b+2c+2a}+\frac{c+2a}{c+2a+2b}+\frac{a+2b}{a+2b+2c}\ge\frac{9}{5}\)

Áp dụng BĐT Bunhiacopxki dạng phân thức ở vế trái :

\(\Rightarrow VT\ge\frac{\left(b+2c+c+2a+a+2b\right)^2}{\left(b+2c\right)^2+2a\left(b+2c\right)+\left(c+2a\right)^2+2b\left(c+2a\right)+\left(a+2b\right)^2+2c\left(a+2b\right)}\)

\(=\frac{9\left(a+b+c\right)^2}{5\left(a+b+b\right)^2}=\frac{9}{5}\left(đpcm\right)\)

Dấu " = '" xảy ra khi a=b=c

10 tháng 3 2020

b ) Ta có abc =1

Ta chứng minh :

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}=1\)

VT \(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ac}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\left(đpcm\right)\)

Ta có : \(\left(1+a\right)^2+b^2+5=\left(a^2+b^2\right)+2a+6\ge2ab+2a+6\)

\(\Rightarrow\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+4}\)

\(\frac{1}{ab+a+4}=\frac{1}{ab+a+1+3}\le\frac{1}{4}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\) ( do \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)=\frac{11}{6}-\frac{1}{2}.\frac{1}{ab+a+1}\)

Khi đó :

\(P\ge\frac{11}{2}-\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{11}{2}-\frac{1}{2}.1=5\)

\(P_{Min}=5\) khi \(a=b=c=1\)

1 tháng 1 2021

giả sử \(a\ge b\ge c\ge0\)

Ta có: \(a+\frac{b}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-b^2\right)\ge0\Rightarrow a+\frac{b}{2}\ge\frac{a^2+ab+b^2}{a+b}\)

\(b+\frac{a}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-a^2\right)\le0\Rightarrow b+\frac{a}{2}\le\frac{a^2+ab+b^2}{a+b}\)

Tương tự: \(b+\frac{c}{2}\ge\frac{b^2+bc+c^2}{b+c}\ge c+\frac{b}{2};a+\frac{c}{2}\ge\frac{a^2+ac+c^2}{a+c}\ge c+\frac{a}{2}\)

Lại có:+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\ge\left(a-b\right)\left(b+\frac{a}{2}\right)+\left(b-c\right)\left(c+\frac{a}{2}\right)-\left(a-c\right)\left(a+\frac{c}{2}\right)\)

\(\ge\frac{-1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(1\right)\)

+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\le\left(a-b\right)\left(a+\frac{b}{2}\right)+\left(b-c\right)\left(b+\frac{c}{2}\right)-\left(a-c\right)\left(c+\frac{a}{2}\right)\)

\(\le\frac{1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(2\right)\)

Từ 1,2 => đpcm

2 tháng 1 2021

BĐT đã cho tuong duong voi:

\(\left|\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\le\frac{1}{4}\left[\Sigma\left(a-b\right)^2\right]\)

Theo AM-GM ta có: \(\left(ab+bc+ca\right)\le\frac{9}{8}\cdot\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+b+c}\)

Có: \(VT\le\frac{9}{8}\left|\frac{\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{\left(a+b+c\right)}\right|=\frac{9\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{8\left(a+b+c\right)}\)

Cần chứng minh: \(4\left(a+b+c\right)^2\left[\Sigma\left(a-b\right)^2\right]^2\ge9\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\)

Rõ ràng \(\Sigma\left(a-b\right)^2\ge3\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Cần cm: \(36\left(a+b+c\right)^2\sqrt[3]{\left(a-b\right)^4\left(b-c\right)^4\left(c-a\right)^4}\ge9\sqrt[3]{\left(a-b\right)^6\left(b-c\right)^6\left(c-a\right)^6}\)

Hay \(4\left(a+b+c\right)^2\ge\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Tiếp tục là điều hiển nhiên do \(VT\ge4\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]\)

\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

\(\ge6\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\ge VP\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\\a-b=b-c=c-a\\a=b=c\end{cases}}\Leftrightarrow a=b=c.\)

7 tháng 5 2020

\(\Leftrightarrow\Sigma\sqrt{\frac{3a^3}{\left[5a^2+\left(b+c\right)^2\right]\left(a+b+c\right)}}\le1\)

Theo Am-GM: \(VT=\Sigma\sqrt{\frac{3a^2}{5a^2+\left(b+c\right)^2}.\frac{a}{a+b+c}}\le\Sigma\frac{3a^2}{2\left(5a^2+\left(b+c\right)^2\right)}+\frac{1}{2}\)

Như vậy nó là đủ để chứng minh rằng: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\)

Giả sử \(c=min\left\{a,b,c\right\}\) nó tương đương:

$$2\, \left( a-b \right) ^{2} \left( 3\,c+a+b \right) \left( -c+a+b
 \right) \left( {a}^{2}+2\,ab+{b}^{2}+5\,{c}^{2} \right) +2\,c
 \left( a-c \right) \left( b-c \right) \left( 3\,{a}^{3}+9\,{a}^{2}b
+17\,c{a}^{2}+9\,a{b}^{2}-20\,abc+3\,{c}^{2}a+3\,{b}^{3}+17\,c{b}^{2}+
3\,{c}^{2}b+{c}^{3} \right) \geqq 0$$

(Gõ Latex, không hiện thì vô thống kê hỏi đáp xem)

Đây là điều hiển nhiên/

PS: Bài này quan trọng là ý tưởng phá căn thôi chứ không có gì khó. Lúc đầu UCT bất đẳng thức cuối cho đẹp nhưng phải xét các TH mệt lắm, chưa rành nên không làm cách đó:D

7 tháng 5 2020

Chứng minh: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\), cách 2:

Đổi biến sang pqr: (Vô thống kê hỏi đáp xem nếu olm không hiện Latex)

Nếu \(p^2\le4q\) ta cần:

$$2/9\,p \left( 19\,{p}^{2}-36\,q \right) \left( {p}^{3}-4\,qp+9\,r
 \right) -4/9\, \left( {p}^{2}-3\,q \right) \left( {p}^{2}-4\,q
 \right) \left( 5\,{p}^{2}-3\,q \right) \geqq 0$$

(Hiển nhiên)

Nếu \(p^2\ge4q\) thì cần chứng minh:

$$2\,p \left( 19\,{p}^{2}-36\,q \right) r+2\, \left( {p}^{2}-4\,q
 \right) \left( {p}^{4}-2\,{q}^{2} \right) \geqq 0$$

(Hiển nhiên)

Từ 2 TH trên ta thu được điều phải chứng minh.