K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Vì có 3 số lẻ nên  số dư khi chia cho số 8 thì là các số : 1 ; 3 ; 5 ; 7 

Chia làm 2 nhóm : nhóm 1 có số dư là : 1 và 7 

                               nhóm 2 có số dư là 3 và 5 

Xảy ra 2 trường hợp :

 Trường hợp 1 :      3 số lẻ trên thuốc 1 trong 2 nhóm đã chia

Mà tổng của 1 số dư 1 và 1 số dư 7 bao giờ cũng chia hết cho 8 

và tổng của 1 số dư 3 và 5 cũng chia hết cho 8

=>  tổng của 2 số đó chia hết cho 8 

Trường hợp 2 : 3 số lẻ trên không thuộc 2 nhóm đã chia 

=>  phải có 2 số có cùng số dư 

=> hiệu của chúng phải chi hết cho 8 

31 tháng 3 2018

cố lên người giải hộ

19 tháng 5 2018

Ta có : 

Số lẻ chia 8 dư : 1,3,5,7

Chia 2 nhóm 

+ Nhóm 1 :Chia 8 dư 1,7

+Nhóm 2 :Chia 8 dư 3,5 

3 số lẻ chia 8 có 3 số dư

3 số dư \(\in\)2 nhóm :theo nguyên lí direclê sẽ có một nhóm chứa ít nhất 2 số dư 

TH1 : 2 số dư khác nhau

=> Tổng 2 số chia hết cho 8 

TH2 : 2 số dư giống nhau 

=> Hiệu 2 số chia hết cho 8

Kb vs mk k?Chúc bạn học tốt

Tữ hỏi tự trả lời , ăn gian quá .

10 tháng 1 2017

tổng hoặc hiệu của 3 số lẻ bất kì ko bao giờ chia hết cho 8

chỉ chia hết cho 3 thôi

nha bn đề sai

20 tháng 9 2023

Cho 5 sao

20 tháng 9 2023

thế 1+1 hoặc 1-1 chia hết cho 37 à

7 tháng 4 2016

Bạn hãy xem phần câu hỏi tương tự, có đấy ^^

10 tháng 1 2017

Gọi 3 số lẻ đó là n; n+3; n+7 (n thuộc N)

- tổng của 3 số đó là:n+3+n+7=n+n+3+7=3n+7+3=2n+10

do 2n luôn là 1 số chẵn => 2n chia hết cho 8 và 10 không chia hết cho 8=>3n+10 không chia hết cho 8

-hiệu của 3 số đó là: n-(n+3)=n-n-3= -3 không chia hết cho 8

Vậy tổng hoặc hiệu 2 số bất kì trong 3 số lẻ bao giờ cx chia hết cho 8

10 tháng 1 2017

Khó hiểu

18 tháng 10 2023

Theo đề bài các số dư ={1;3;5;7}

=> có ít nhất 2 số khi chia cho 15 có cùng số dư ta gọi 2 số đó là là a và b

\(\Rightarrow a\equiv b\) (mod 15) \(\Rightarrow a-b⋮15\)

 

21 tháng 11 2016

vd:1,2,3,4,5,6 trong đó có số 6 chia hết cho 6

vd:11,12,13,14,15,16 trong đo có số 12 chia hết cho 6

21 tháng 11 2016

lời giải đi bạn ơi viết vd thi ko đc đâu

7 tháng 12 2017

 - Nếu trong 5 số lẻ đó  có 4 số  có tổng chia hết cho 4 thì bài toán được chứng minh 

- Nếu trong 5 số lẻ đó  có 4 số không có tổng chia hết cho 4 

Khi các tổng S1,S2 ,....,S5 khi chia cho 4 sẽ có thể  dử là 1,2,3 [ 3 khả năng] 

  Do đó theo nguyên lí Đi - rích - lê sẽ tồn tại hai tổng Sm , S [  m > n ] khi đó sẽ cùng dư khi : 4

 -> Sm-Sn chia hết cho 4

    [ a1 + a2+a3+.........+am ]  -  [ a1 + a2+a3+.........+an ] 

 <=>  an+1 + an+2 + ......................... + am chia hết cho 4

  Vật ttoorng các số an+1 + an+2 + ......................... + am chia hết cho 4 

          Từ 2 th  => bài toán được chứng minh