Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
Bài 2 dùng sos:)) Nhưng em không chắc đâu, chỗ dùng mấy cái kí hiệu tổng ý, nó rất rối, nhưng em lại lười viết ra:)
BĐT \(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}-1+\frac{\left(a+b+c\right)^2}{abc}-27\ge0\)
\(\Leftrightarrow\frac{\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2}{abc}-\frac{\Sigma\frac{1}{2}\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\Sigma\frac{1}{2}\left(a-b\right)^2\left(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}\right)\ge0\)
Ta có: \(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+7c\right)-abc}{abc}\)
\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}.3\sqrt[3]{7abc}-abc}{abc}=\frac{3\sqrt[3]{7}.abc-abc}{abc}>0\).
Từ đó ta có thể suy ra đpcm.
Nãy nhầm vị trí:v Làm lại bài 3:
Từ giả thiết suy ra \(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}\)
\(=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Tương tự hai BĐT còn lại và nhân theo vế sẽ thu được t= abc \(\ge8\) (1)
Mặt khác nhân hai vế của giả thiết với (a+1)(b+1)(c+1) thu được:
\(2\left(a+1\right)\left(b+1\right)\left(c+1\right)=\Sigma a\left(b+1\right)\left(c+1\right)\)
\(\Rightarrow a+b+c=abc-2\). Từ (1) suy ra cả hai vế đều dương.
Do đó \(\sqrt{a+b+c}=\sqrt{abc-2}\)
\(\Rightarrow\sqrt{3abc\left(a+b+c\right)}=\sqrt{3abc\left(abc-2\right)}\). Mặt khác, theo hệ quả quen thuộc của bđt AM- GM thì \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)
Do đó \(ab+bc+ca\ge\sqrt{3abc\left(abc-2\right)}=\sqrt{3t\left(t-2\right)}\)
Mặt khác ta dễ dàng chứng minh được \(3t\left(t-2\right)\ge12^2\left(\text{với }t\ge8\right)\)
Như vậy ta có đpcm.
P.s: Mong là lần này không bị nhầm
\(GT\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Ta có:
\(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cộng vế với vế:
\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Lời giải:
Ta thấy:
\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)
\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)
\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)
Có:
$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$
$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$
Do đó:
$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)
Áp dụng BĐT AM-GM:
\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)
\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
Lời giải:
BĐT cần chứng minh tương đương với:
$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq 1(*)$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq \frac{9}{bc(2a^2+bc)+ac(2b^2+ac)+ab(2c^2+ab)}=\frac{9}{(ab+bc+ac)^2}=\frac{9}{3^2}=1$
Do đó BĐT $(*)$ đúng. Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Cho bài toán phụ : Cho a ; b là các số thực dương
C/m : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
Do a ; b là các số thực dương \(\Rightarrow ab\ge1\)
Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)
\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{ab^3-a^2b^2+ab-a^2+a^3b-a^2b^2+ab-b^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{ab\left(a^2+b^2\right)+2ab-2a^2b^2-a^2-b^2}{...}\ge0\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(ab-1\right)-2ab\left(ab-1\right)}{...}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{...}\ge0\)
Dễ thấy mẫu luôn dương , tử \(\ge0\) => luôn đúng
=> BĐT được c/m
Áp dụng BĐT phụ ( từ bài toán phụ trên ) , ta có :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)
( * )
Có : \(\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}=\frac{4c^2+2ab+6-3abc^2-3c^2-3ab-3}{...}=\frac{c^2+3-ab-3abc^2}{...}=\frac{c^2+bc+ac-3abc^2}{...}=\frac{c\left(a+b+c-3abc\right)}{...}\)\(\left(ab+bc+ac=3\right)\) ( 1 )
Do a , b , c là các số thực dương , áp dụng BĐT Cô - si cho 3 số , ta có : \(\left(a+b+c\right)\left(ab+bc+ac\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)
\(\Rightarrow a+b+c\ge3abc\left(ab+bc+ac=3\right)\) ( 2 )
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}\ge0\)
\(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\frac{3}{2}\) ( *' )
Từ (*) và (*') => ĐPCM
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Sửa \(\dfrac{1}{3}\rightarrow3\)
Từ \(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=6\)
Ta có: \(\dfrac{1}{a^2}+1\ge\dfrac{2}{a};\dfrac{1}{b^2}+1\ge\dfrac{2}{b};\dfrac{1}{c^2}+1\ge\dfrac{2}{c}\)
Và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab};\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc};\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{2}{ac}\)
Cộng theo vế các BĐT trên ta có:
\(3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\Leftrightarrow3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\right)\ge12\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\ge4\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
\("="\Leftrightarrow a=b=c=1\)
để sau nha giờ bận .-.