Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)
Tương tự ta cũng có
\(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)
Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)
Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)
Đáp án B
Ta có phương trình đường tròn (C):
Do điểm A nằm trên đường tròn (C) nên ta có:
Mặt khác F = 4a + 3b -1 = 4(a-4) + 3(b-3) + 24
Ta có: = 25.9 = 255
Khi đó M = 39, m = 9
Vậy M + m = 48
Cách 2:
Ta có
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
a;b phải thỏa mãn hệ điều kiện \(\left\{{}\begin{matrix}a>4\\4b^2-a+4\le0\end{matrix}\right.\) mà bạn
Nếu a=5 thì ko có b nguyên dương thỏa mãn điều kiện delta bên dưới
Do đó cần rút a từ điều kiện delta: \(a\ge4b^2+4\) thay vào S và khảo sát hàm bậc 2 \(f\left(b\right)\)
Đồng thời b nguyên dương nên khi a thỏa mãn \(a\ge4b^2+4\) thì cũng hiển nhiên thỏa mãn luôn a>4
\(y'=\left(a-4\right)x^2+4bx+1\)
Do hàm số đồng biến trên R \(\Leftrightarrow\left\{{}\begin{matrix}a-4>0\\\Delta'=4b^2-a+4\le0\end{matrix}\right.\)
\(\Rightarrow a\ge4b^2+4\)
\(\Rightarrow S=2a+3b\ge2\left(4b^2+4\right)+3b\)
\(\Rightarrow S=f\left(b\right)\ge8b^2+3b+8\)
\(f\left(b\right)\) đồng biến khi \(b\) dương \(\Rightarrow f\left(b\right)_{min}\) khi \(b=1\Rightarrow S_{min}=19\) khi \(\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)
à:::::::::: a,b nguyên dương
\(S=8b^2+3b+8\)
vậy min S tại b=1 (số nguyên dương ) ......nhìn thôi cũng thấy rồi !
=>minS=19======>>>(B)
\(y'=\left(a-4\right)x^2+4bx+1\)
Để hàm số đồng biến trên R thì
\(\left\{{}\begin{matrix}a-4>0\\4b^2-\left(a-4\right)\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a>4\\a-4\ge4b^2\end{matrix}\right.\)
ta thấy S=2a+3b nhỏ nhất khi a và b nhỏ nhất
ta thấy :\(a-4\ge4b^2\)
a và b sẽ mang giá trị nhỏ nhất khi \(a-4=4b^2\)
=>\(a=4b^2+4\)
vậy \(S=2\left(4b^2+4\right)+3b\)
vậy min S là : ...................
..............................
.................................
....................
\(-\infty\)
sao kì vậy ! may be lí luận sai chỗ nào đấy