K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

ta có: \(a+b+c=\frac{1}{abc}=>abc\left(a+b+c\right)=1.\)

thay 1 vào các biểu thức 1+b2c2 và 1+a2c2 có:

\(1+b^2c^2=abc\left(a+b+c\right)+b^2c^2=bc\left(a^2+ab+ac+bc\right)=bc\left(a+c\right)\left(a+b\right)\)(1)
tương tự \(1+a^2c^2=ac\left(a+b\right)\left(b+c\right)\)(2)

Xét \(c^2+a^2b^2c^2=c^2\left(1+b^2a^2\right)=c^2\left(a+c\right)\left(b+c\right)ab\)(3)

Thay (1)(2)(3) vào Vế trái được:\(\sqrt{\left(a+b\right)^2}=a+b\left(đpcm\right)\)