K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

Mình thì dư đoán điểm rơi \(a=b=c=1\) rồi, nhưng nháp mãi vẫn không ra được.

\(\frac{a}{b^3+ab}\)=\(\frac{a^2}{b^3a+a^2b}\)

tương tự thì ta có S= \(\frac{a^2}{b^3a+a^2b}\) +     \(\frac{b^2}{c^3b+b^2c}\)   +    \(\frac{c^2}{a^3c+ac^2}\)

áp dụng bất dẳng thức cô si s goát,ta có

S=\(\frac{a^2}{b^3a+a^2b}\)+     \(\frac{b^2}{c^3b+b^2c}\)+    \(\frac{c^2}{a^3c+ac^2}\)\(\ge\)   \(\frac{\left(a+b+c\right)^2}{b^3a+a^2b+c^3b+b^2c+a^3c+c^2a}\)

cái mẫu mk chx nghĩ  ra phân tích ra sao nx,tí nghĩ nốt

30 tháng 5 2019

Từ giả thiết và BĐT AM-GM suy ra:\(\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\)3

Ta có:

P\(\ge\)\(\frac{2a^3}{3\left(a^2+b^2\right)}\)+\(\frac{2b^3}{3\left(c^2+b^2\right)}\)+\(\frac{2c^3}{3\left(a^2+c^2\right)}\)

=\(\frac{2}{3}\)(\(\frac{a\left(a^2+b^2\right)-ab^2}{\left(a^2+b^2\right)}\)+\(\frac{b\left(c^2+b^2\right)-bc^2}{\left(c^2+b^2\right)}\)+\(\frac{a\left(a^2+c^2\right)-ca^2}{\left(a^2+c^2\right)}\))

=\(\frac{2}{3}\)(a+b+c-\(\frac{ab^2}{\left(a^2+b^2\right)}\)-\(\frac{bc^2}{\left(c^2+b^2\right)}\)-\(\frac{ca^2}{\left(a^2+c^2\right)}\))

\(\ge\)\(\frac{2}{3}\)(a+b+c-\(\frac{a}{2}\)-\(\frac{b}{2}\)-\(\frac{c}{2}\))

=\(\frac{2}{3}\).\(\frac{a+b+c}{2}\)=\(\frac{a+b+c}{3}\)=\(\frac{\left(a+1\right)+\left(b+1\right)+\left(c+1\right)}{3}\)-1

\(\ge\)\(\frac{3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{3}\)-1\(\ge\)2

Vậy:MinP=2 khi a=b=c=2

30 tháng 5 2019

cách này dễ hiểu hơn nè :

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

Ta có : \(1\ge\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)

\(\Leftrightarrow1\ge\frac{9}{a+b+c+3}\)\(\Leftrightarrow a+b+c+3\ge9\)\(\Leftrightarrow a+b+c\ge6\)

\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab^2-a^2b}{a^2+ab+b^2}=a-\frac{ab^2+a^2b}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)

Tương tự : \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\)\(\frac{c^3}{c^2+ac+a^2}\ge c-\frac{a+c}{3}\)

Cộng cả 3 vế , ta được : \(P\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{1}{3}\left(a+b+c\right)\ge\frac{1}{3}.6=2\)

Vậy GTNN của P là 2 \(\Leftrightarrow a=b=c=2\)

26 tháng 4 2018

\(P=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{9}{3+ab+ac+bc}\ge\frac{9}{3+\frac{\left(a+b+c\right)^2}{3}}=\frac{9}{3+3}=\frac{3}{2}\)

17 tháng 5 2018

dựa vào BĐT nào để suy ra \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{9}{3+ab+bc+ac}\)vậy bạn ??

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

12 tháng 11 2018

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

5 tháng 9 2021

P-S=0 ?? =))

Cần các cao nhân giải khác phương pháp SS

Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)

Ai làm được xin cảm ơn trước

22 tháng 7 2019

#)Giải :

Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Áp dụng BĐT Cauchy :

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)

Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)

\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)

\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)

Dấu ''='' xảy ra khi a = b = c = 1

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

$A=a-\frac{ac}{c+a^2}+b-\frac{ab}{a+b^2}+c-\frac{bc}{b+c^2}$

$=\sum a-\sum \frac{ac}{c+a^2}$

Áp dụng BĐT AM-GM: $c+a^2\geq 2a\sqrt{c}$

$\Rightarrow A\geq \sum a-\frac{1}{2}\sum \sqrt{c}$

Áp dụng BĐT Cauchy-Schwarz:

$(\sum \sqrt{c})^2\leq (c+a+b)(1+1+1)$

$\Rightarrow \sum \sqrt{c}\leq 3\sum a$

Do đó $A\geq \sum a-\frac{1}{2}\sqrt{3\sum a}$

Đặt $\sqrt{3\sum a}=t$ thì $A\geq \frac{t^2}{3}-\frac{t}{2}(*)$

Từ điều kiện $ab+bc+ac=3abc\Rightarrow 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Áp dụng BĐT Cauchy-Schwarz:

$3=\sum \frac{1}{a}\geq \frac{9}{\sum a}\Rightarrow \sum a\geq 3$

$\Rightarrow t=\sqrt{3\sum a}\geq 3$

Do đó:

$\frac{t^2}{3}-\frac{t}{2}=(t-3)(\frac{t}{3}+\frac{1}{2})+\frac{3}{2}\geq \frac{3}{2}$ với mọi $t\geq 3(**)$

Từ $(*); (**)\Rightarrow A\geq \frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$ khi $a=b=c=1$

26 tháng 8 2020

Làm đi làm lại nhiều rồi chán không muốn viết nữa vô TKHĐ xem hình ảnh

Hình ảnh có thể có: văn bản

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

sao mình làm ra nó bằng 3/2 đc mà lại ko bé hơn nhỉ