Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x=4y=3z
\(\frac{a+b-c}{6}=\frac{b+c-a}{10}=\frac{c+a-b}{2}=\frac{a}{4}=\frac{b}{8}=\frac{c}{6}\)
\(\Rightarrow\frac{2ãx}{4}=\frac{4by}{8}=\frac{3cz}{6}=\frac{ax}{2}=\frac{by}{2}=\frac{cz}{2}\)
\(\Rightarrowãx=by=cz\)
Ba số x,y,z tỉ lệ với ba số a,b,c
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)(1)
Lại có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa}{a^2}+\frac{yb}{b^2}+\frac{zc}{c^2}=\frac{xa+yb+zc}{a^2+b^2+c^2}=\frac{9\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=9\) (2)
Từ (1) và (2) ta có : \(\frac{x+y+z}{a+b+c}=9\)
\(\Rightarrow\left(x+y+z\right)=9\left(a+b+c\right)\) (đpcm)
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
Ta có:
x,y,z tỉ lệ với 3; 4; 5
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=n\) (n>0)
\(\Rightarrow\left\{{}\begin{matrix}x=3n\\y=4n\\z=5n\end{matrix}\right.\)\(\Rightarrow x+y+z=3n+4n+5n=12n\)
a, b, c tỉ lệ với 4; 5; 6
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=m\) (m>0)
\(\Rightarrow\left\{{}\begin{matrix}a=4m\\b=5m\\c=6m\end{matrix}\right.\)\(\Rightarrow a+b+c=4m+5m+6m=15m\)
Mà \(x+y+z=a+b+c\)
\(\Rightarrow12n=15m\Rightarrow4n=5m\)
\(\Rightarrow n=\frac{5}{4}m\)
\(\Rightarrow\left\{{}\begin{matrix}x=3n=3.\frac{5}{4}m=\frac{15}{4}m\\y=4n=4.\frac{5}{4}m=5m\\z=5n=5.\frac{5}{4}m=\frac{25}{4}m\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}a=4m\\x=\frac{15}{4}m=3,75m\end{matrix}\right.\)mà m>0 nên \(a>x\left(đpcm\right)\)
\(\left\{{}\begin{matrix}b=5m\\y=5m\end{matrix}\right.\)\(\Rightarrow y=b\left(đpcm\right)\)
\(\left\{{}\begin{matrix}z=\frac{25}{4}m=6,25m\\c=6m\end{matrix}\right.\) mà m>0 nên \(z>c\left(đpcm\right)\)
Ta có ax + by = c ; by + cz = a
<=> cz - ax = a - c (1)
mà cz + ax = b (2)
Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)
=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)
Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\); \(\frac{1}{y+1}=\frac{2b}{a+b+c}\)
=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Chonj D