Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi số thực ta luôn có:
`(a-b)^2+(b-c)^2+(c-a)^2>=0`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`
`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`
`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`
`<=>a^2+b^2+c^2>=4/3`
Dấu "=" xảy ra khi `a=b=c=2/3`
~Quang Anh Vũ~
\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)
\(A_{min}=2020\) khi \(a=b=c=1\)
Giả sử \(a\ge b\ge c\)
\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\)
\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)
\(\ge12\)
ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)
Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị
cho hai số a, b thoả mãn a^2+b^2=1. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A=a^6+b^6
Ta có
A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)
= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)
Ta lại có
1 = a2 + b2 \(\ge\)2ab
\(\Rightarrow ab\le\frac{1}{2}\)(2)
Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi a2 = b2 = 0,5
Giá trị lớn nhất không có
Lời giải:
Do $a\geq 4, b\geq 5, c\geq 6$
$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$
$\Rightarrow c\leq 7$
$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$
$\Rightarrow a< 9$
$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$
$\Rightarrow b< 8$
Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$
Suy ra:
$(a-4)(a-9)\leq 0$
$(b-5)(b-8)\leq 0$
$(c-6)(c-7)\leq 0$
$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$
$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$
$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$
Áp dụng BĐT Bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)
Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(=4-2\left(ab+bc+ca\right)\)
Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min