\(a^2.\left(b+c\right)=b^2.\left(a+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

\(\text{Ta có: }a^2\left(b+c\right)-b^2\left(a+c\right)=2020\)
\(\Leftrightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)+\left(a^2c-b^2c\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[ab+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\ab+ac+bc=0\end{cases}}\)
\(\text{Xét phần }ab+ac+bc=0,\text{ta có}\)
\(ab+ac=-bc\)
\(\Leftrightarrow a\left(b+c\right)=-bc\)
\(\Leftrightarrow a^2\left(b+c\right)=-abc\)
\(\Leftrightarrow2020=-abc\)
\(\Leftrightarrow abc=-2020\)
\(\text{Lại có: }ac+bc=-ab\)
\(\Leftrightarrow c\left(a+b\right)=-ab\)
\(\Leftrightarrow c^2\left(a+b\right)=-abc\)
\(\Leftrightarrow A=2020\)

20 tháng 2 2022

`Answer:`

Có `a^2.(b+c)=b^2.(a+c)`

`<=>a^2.b+a^2.c-ab^2-b^2.c=0`

`<=>ab.(a-b)+c.(a^2-b^2)=0`

`<=>(a-b)(ab+c(a+b))=0`

`<=>(a-b)(ab+ac+bc)=0`

`<=>ab+ac+bc=0`

Lúc này  `P=c^2.(a+b)=c.(ac+bc)=c.(-ab)=-abc`

Mà `a^2.(b+c)=a.(ab+ac)=a.(-bc)=-abc=2022`

Vậy `P=2022`

28 tháng 12 2018

tìm link: https://olm.vn/hoi-dap/detail/52335434716.html

18 tháng 11 2023

bài 2 bn nên cộng 3 cái lại

mà năm nay bn lên đại học r đúng k ???

11 tháng 3 2020

Đề sai rồi thì phải ak

\(\left(a+c-2b\right)^{2020}+\left|2bd-cd-cb\right|^{2019}=0\) nhé !

\(\Leftrightarrow a+c-2b=0;2bd-cd-cb=0\)

\(\Leftrightarrow a+c=2b;2bd-cd-cb=0\)

\(\Leftrightarrow\left(a+c\right)d-cd-cb=0\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)  ( đpcm )

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)

\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)

Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)

30 tháng 1 2020

mn giúp mk vs

chiều mk nộp rùikhocroikhocroikhocroikhocroi