K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)

\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)

Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)

30 tháng 1 2020

mn giúp mk vs

chiều mk nộp rùikhocroikhocroikhocroikhocroi

7 tháng 3 2020

Đề có sai ko bạn sao lại c-d ?

7 tháng 3 2020

Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)

\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)

Khi đó :

\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)

\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)

\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)

29 tháng 10 2019

Đề sai sai gì đó nhá xem lại dùm

30 tháng 10 2019

Đề bài có bị sai không bạn? Đặng Quốc Huy

30 tháng 10 2019

Ko đề đúng đấy màVũ Minh Tuấn

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Đặt \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}=t\Rightarrow a=2016t; b=2018t; c=2020t\)

Khi đó:

\(\frac{(a-c)^2}{4}=\frac{(2016t-2020t)^2}{4}=\frac{16t^2}{4}=4t^2(1)\)

\((a-b)(b-c)=(2016t-2018t)(2018t-2020t)=(-2t)(-2t)=4t^2(2)\)

Từ \((1);(2)\Rightarrow \frac{(a-c)^2}{4}=(a-b)(b-c)\) (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Đặng Quốc Huy:

\(\frac{(2016t-2020t)^2}{4}=\frac{(-4t)^2}{4}=\frac{(-4)^2.t^2}{4}=\frac{16t^2}{4}=4t^2\)

24 tháng 12 2019

Ta có: \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=\frac{a-b}{2017-2018}=\frac{b-c}{2018-2019}=\frac{a-c}{2017-2019}.\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)

\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{a-c}{-2}\right)^2\)

\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{\left(-2\right)^2}\)

\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{4}.\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2.1\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 12 2019

nhanh lên nhé sáng mai mình ktra rồi

Ta có :

\(\frac{a+b-b-c}{2018-2019}=\frac{a-c}{-1}\)

\(\frac{b+c-c-a}{2019-2020}=\frac{b-a}{-1}\)

\(\frac{b-c}{2018-2020}=\frac{b-c}{-2}\)     

Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{b-c}{-2}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{a-c}{-1}=k\\\frac{b-a}{-1}=k\\\frac{b-c}{-2}=k\end{cases}\Rightarrow\hept{\begin{cases}a-c=-k\\b-a=-k\\b-c=k.\left(-2\right)\end{cases}}}\)

\(\Rightarrowđpcm\)