Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a-b}{1+ab}=\frac{b-c}{1+bc}=\frac{a-c}{1+ac}\) nên
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ca}\)
\(=\left(a-b\right)\left[\frac{1}{1+ab}-\frac{1}{1+bc}\right]+\left(c-a\right)\left[\frac{1}{1+ac}-\frac{1}{1+bc}\right]\)
\(=\frac{\left(a-b\right)\left(1+bc-1+ab\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{\left(c-a\right)\left(1+bc-1-ac\right)}{\left(1+ac\right)\left(1+bc\right)}\)
\(=\frac{b\left(c-a\right)\left(a-b\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{c\left(c-a\right)\left(b-a\right)}{\left(1+ac\right)\left(1+bc\right)}\)
\(=\frac{\left(a-b\right)\left(c-a\right)}{\left(1+bc\right)}\left[\frac{b}{1+ab}-\frac{c}{1+ac}\right]\)
\(=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\left(đpcm\right)\)
Ta có \(\dfrac{a-b}{ab+1}+\dfrac{b-c}{bc+1}+\dfrac{c-a}{ca+1}=\dfrac{\left(a-b\right)\left(bc+1\right)\left(ca+1\right)+\left(b-c\right)\left(ca+1\right)\left(ab+1\right)+\left(a-b\right)\left(bc+1\right)\left(ca+1\right)}{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\).
\(\left(a-b\right)\left(1+bc\right)\left(1+ca\right)+\left(b-c\right)\left(1+ca\right)\left(1+ab\right)+\left(c-a\right)\left(1+bc\right)\left(1+ab\right)=\left(a-b\right)\left(1+bc+ca+abc^2\right)+\left(b-c\right)\left(1+ab+ca+a^2bc\right)+\left(c-a\right)\left(1+ab+bc+ab^2c\right)=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)+abc\left(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\frac{\left(a-b\right)\left(1+bc\right)\left(1+ca\right)+\left(b-c\right)\left(1+ab\right)\left(1+ca\right)+\left(c-a\right)\left(1+ab\right)\left(1+bc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}\) suy ra ĐPCM
a) \(x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b/ không mất tính tổng quát ta giả sử: a = b + c thì
\(\frac{a^2+b^2-c^2}{2ab}=\frac{b^2+2bc+c^2-c^2}{2\left(b+c\right)b}=\frac{2b^2+2bc}{2b^2+2bc}=1\)
Tương tự
\(\frac{c^2+a^2-b^2}{2ac}=\frac{2c^2+2ac}{2c^2+2ac}=1\)
\(\frac{b^2+c^2-a^2}{2bc}=\frac{-2bc}{2bc}=-1\)
Vậy trong ba số luôn có 2 số = 1 và 1 số = - 1
\(\frac{a^2+b^2-c^2}{2ab}+\frac{-a^2+b^2+c^2}{2bc}+\frac{a^2-b^2+c^2}{2ca}=1\)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-2abc-a^3-b^3-c^3=0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)=0\)
\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\)
Vậy trong 3 số có 1 số bẳng tổng 2 số kia
a. ĐK: a, b, c khác 0.
\(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}=1\)
\(\Leftrightarrow\left[\frac{a^2+b^2-c^2}{2ab}-1\right]+\left[\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\right]=0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2-\left(a^2-b^2\right)}{b}+\frac{c^2+\left(a^2-b^2\right)}{a}\right]=0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2\left(a+b\right)-\left(a^2-b^2\right)\left(a-b\right)}{ab}\right]=0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{2abc}=0\)
\(\Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left(1-\frac{a+b}{c}\right)=0\)
\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)\left(c-a-b\right)=0\)
\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\).
b) Không mất tính tổng quả. G/s: a = b + c
Khi đó ta có:
\(\frac{a^2+b^2-c^2}{2ab}=\frac{\left(b+c\right)^2+b^2-c^2}{2\left(b+c\right)b}=1\)
\(\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-\left(b+c\right)^2}{2bc}=-1\)
\(\frac{c^2+a^2-b^2}{2ca}=\frac{c^2+\left(b+c\right)^2-b^2}{2\left(b+c\right)c}=1\)
=> Điều phải chứng minh.
\(M=\frac{1}{\left(a+b+c\right)^2-2ab-2bc-2ac}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(1)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)
\(=9+\frac{7}{ab+ac+bc}\)(2)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)
\(=3ab+3ac+3bc\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}>=ab+ac+bc\)
\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+21=30\)(4)
từ (1)(2)(3)(4)\(\Rightarrow M=\frac{1}{1-2\left(ab+ac+bc\right)}+\frac{1}{abc}>=30\)
dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
vậy min M là 30 khi \(a=b=c=\frac{1}{3}\)
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có :
\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)
\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)
\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)
Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)
PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))
nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{a-b}{1+ab}+\frac{b-a+a-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{b-a}{1+bc}-\frac{b-a}{1+ab}-\frac{c-a}{1+bc}+\frac{c-a}{1+ac}\)
\(=\left(b-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ab}\right)-\left(c-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ac}\right)\)
\(=\left(b-a\right)\left(\frac{1+ab-1-bc}{\left(1+ab\right)\left(1+bc\right)}\right)-\left(c-a\right)\left(\frac{1+ac-1-bc}{\left(1+bc\right)\left(1+ac\right)}\right)\)
\(=\left(b-a\right)\frac{b\left(a-c\right)}{\left(1+ab\right)\left(1+bc\right)}-\left(c-a\right)\frac{c\left(a-b\right)}{\left(1+bc\right)\left(1+ac\right)}\)
Quy đồng:
\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(c-a\right)c\left(a-b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(a-c\right)c\left(b-a\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)\left(a-c\right)\left(b\left(1+ac\right)-c\left(1+ab\right)\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)\left(a-c\right)\left(b+abc-c-abc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)là tích của chúng.