K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

\(\left(a-b\right)\left(1+bc\right)\left(1+ca\right)+\left(b-c\right)\left(1+ca\right)\left(1+ab\right)+\left(c-a\right)\left(1+bc\right)\left(1+ab\right)=\left(a-b\right)\left(1+bc+ca+abc^2\right)+\left(b-c\right)\left(1+ab+ca+a^2bc\right)+\left(c-a\right)\left(1+ab+bc+ab^2c\right)=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)+abc\left(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

15 tháng 2 2020

\(\frac{\left(a-b\right)\left(1+bc\right)\left(1+ca\right)+\left(b-c\right)\left(1+ab\right)\left(1+ca\right)+\left(c-a\right)\left(1+ab\right)\left(1+bc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}\) suy ra ĐPCM

22 tháng 3 2018

\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}\)

\(=\frac{a-b}{1+ab}+\frac{b-a+a-c}{1+bc}+\frac{c-a}{1+ac}\)

\(=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ac}\)

\(=\frac{b-a}{1+bc}-\frac{b-a}{1+ab}-\frac{c-a}{1+bc}+\frac{c-a}{1+ac}\)

\(=\left(b-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ab}\right)-\left(c-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ac}\right)\)

\(=\left(b-a\right)\left(\frac{1+ab-1-bc}{\left(1+ab\right)\left(1+bc\right)}\right)-\left(c-a\right)\left(\frac{1+ac-1-bc}{\left(1+bc\right)\left(1+ac\right)}\right)\)

\(=\left(b-a\right)\frac{b\left(a-c\right)}{\left(1+ab\right)\left(1+bc\right)}-\left(c-a\right)\frac{c\left(a-b\right)}{\left(1+bc\right)\left(1+ac\right)}\)

Quy đồng:

\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(c-a\right)c\left(a-b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)

\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(a-c\right)c\left(b-a\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)

\(=\frac{\left(b-a\right)\left(a-c\right)\left(b\left(1+ac\right)-c\left(1+ab\right)\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)

\(=\frac{\left(b-a\right)\left(a-c\right)\left(b+abc-c-abc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)là tích của chúng.

12 tháng 11 2019

Ta có

\(\frac{a-b}{1+ab}=\frac{b-c}{1+bc}=\frac{a-c}{1+ac}\)       nên

\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ca}\)

\(=\left(a-b\right)\left[\frac{1}{1+ab}-\frac{1}{1+bc}\right]+\left(c-a\right)\left[\frac{1}{1+ac}-\frac{1}{1+bc}\right]\)

\(=\frac{\left(a-b\right)\left(1+bc-1+ab\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{\left(c-a\right)\left(1+bc-1-ac\right)}{\left(1+ac\right)\left(1+bc\right)}\)

\(=\frac{b\left(c-a\right)\left(a-b\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{c\left(c-a\right)\left(b-a\right)}{\left(1+ac\right)\left(1+bc\right)}\)

\(=\frac{\left(a-b\right)\left(c-a\right)}{\left(1+bc\right)}\left[\frac{b}{1+ab}-\frac{c}{1+ac}\right]\)

\(=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\left(đpcm\right)\)

3 tháng 4 2019

a) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

5 tháng 4 2019

câu b đâu

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

1: 

a: \(B=\dfrac{3x^2+3-x^2+2x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)

\(=\dfrac{x^2+x+1}{x^2+x+1}\cdot\dfrac{1}{2x^2-5x+5}=\dfrac{1}{2x^2-5x+5}\)

b: \(2x^2-5x+5=2\left(x^2-\dfrac{5}{2}x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{15}{16}\right)\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\ge\dfrac{15}{8}\forall x\)

=>B<=8/15

Dấu '=' xảy ra khi x=5/4

 

5 tháng 7 2016

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\)

=>\(\frac{1}{a^2}=-\left(\frac{1}{ab}+\frac{1}{ca}\right)\)

cm tương tự: \(\frac{1}{b^2}=-\left(\frac{1}{ab}+\frac{1}{bc}\right)\)

                     \(\frac{1}{c^2}=-\left(\frac{1}{ca}+\frac{1}{bc}\right)\)

=> \(N=-\left[bc\left(\frac{1}{ab}+\frac{1}{ca}\right)+ca\left(\frac{1}{ab}+\frac{1}{bc}\right)+ab\left(\frac{1}{ca}+\frac{1}{bc}\right)\right]\)

          \(=-\left[\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right]\)

            \(=-\left[\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right]\)    (1)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=0\)

=>\(1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}=0\)

=>\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-3\)   (2)

Từ (1) và (2) =>N=3

        

23 tháng 3 2019

\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\frac{ax-a^2+bx-b^2+cx-c^2}{abc}=2\left(\frac{ab+bc+ac}{abc}\right)\)

\(ax-a^2+bx-b^2+cx-c^2=2\left(ab+bc+ac\right)\)

\(x\left(a+b+c\right)-\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(x\left(a+b+c\right)=a^2+b^2+c^2+2ab+2bc+2ac\)

\(x=a+b+c\)