Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|
\(2n+1=a^2\)
Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)
\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ
Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)
\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn
\(\Rightarrow\)n là số chẵn
Vì n là số chẵn nên 3a+1 là số lẻ
\(\Rightarrow3n+1=\left(2p+1\right)^2\)
\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)
Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)
Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
Đặt \(2n+1=a^2\)\(;3n+1=b^2\)
Dễ thấy:\(4\left(2n+1\right)-\left(3n+1\right)=5n+3=4a^2-b^2=\left(2a-b\right)\left(2a+b\right)\)
Vì \(5n+3\)\(=\left(2a-b\right)\left(2a+b\right)\) Nên \(5n+3\) là hợp số.
Vậy \(5n+3\) là hợp số (ĐPCM)
phải chứng minh 2 thừa số ấy không thể bằng 1 nữa chứ bạn, nếu chúng bằng một thì 5n+3 k phải hợp số