Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
Lời giải:
a)\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow4a=3b\)
Và \(4a.5=3b.5\Leftrightarrow20a=15b\Leftrightarrow\dfrac{20a}{3}=5b\)
Khi đó:
\(A=\dfrac{2a-5b}{a-3b}=\dfrac{2a-\dfrac{20}{3}a}{a-4a}=\dfrac{-\dfrac{14}{3}a}{-3a}=\dfrac{-14}{\dfrac{3}{-3}}=14\)
b) Ta có:
\(a-b=7\Leftrightarrow b=a-7\)
\(B=\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{3a-\left(a-7\right)}{2a+7}+\dfrac{3\left(a-7\right)-a}{2\left(a-7\right)-7}\)
\(B=\dfrac{3a-a+7}{2a+7}+\dfrac{3a-21-a}{2a-14-7}\)
\(B=\dfrac{2a+7}{2a+7}+\dfrac{2a-21}{2a-21}=1+1=2\)
Câu 1:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a^2}{c^2}=\dfrac{b^2k^2}{d^2k^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{2a^2+3b^2}{2c^2+3d^2}=\dfrac{2b^2k^2+3b^2}{2d^2k^2+3d^2}=\dfrac{b^2}{d^2}\)
=>\(\dfrac{a^2}{c^2}=\dfrac{2a^2+3b^2}{2c^2+3d^2}\)
b: \(\dfrac{2a-3c}{c}=\dfrac{2bk-3dk}{dk}=\dfrac{2b-3d}{d}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)
\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)
Do đó: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)
\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)
=>\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c: \(\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left(\dfrac{b}{d}\right)^4\)
\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{b^4k^4+b^4}{d^4k^4+d^4}=\dfrac{b^4}{d^4}\)
Do đó: \(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
\(a,Tacó:\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a^3}{2^3}=\dfrac{a\cdot a\cdot a}{2\cdot2\cdot2}=\dfrac{a\cdot b\cdot c}{2\cdot3\cdot5}=\dfrac{810}{30}=27\\ \Rightarrow\left\{{}\begin{matrix}a=27\cdot2=54\\b=27\cdot3=81\\c=27\cdot5=135\end{matrix}\right.\\ Vậy...\)
Các câu khác cx cùng dạng tương tự bn tự làm nha!
a, \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và a . b . c = 810
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)
Mà a . b . c = 810
=> 2k . 3k . 5k = 810
=> 30\(k^3\) = 810
=> \(k^3=810:30\)
=> \(k^3=27\)
=> \(k^3=3^3\)
=> k = 3
=> \(a=2.3=6\)
\(b=3.3=9\)
\(c=5.3=15\)
Vậy .....
b, \(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}\)và a - 3b + 4c = 62
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}=\dfrac{a-3b+4c}{4-3.3+4.9}=\dfrac{62}{31}=2\)
=> \(\dfrac{a}{4}=2\Rightarrow a=8\)
\(\dfrac{b}{3}=2\Rightarrow b=6\)
\(\dfrac{c}{9}=2\Rightarrow c=18\)
Vậy .......
Giải:
Ta có: \(\dfrac{a}{b}=\dfrac{3}{4}\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
\(\dfrac{2a-5b}{a-3b}=\dfrac{6k-20k}{3k-12k}=\dfrac{-24k}{-9k}=\dfrac{24}{9}=\dfrac{8}{3}\)
Vậy \(\dfrac{2a-5b}{a-3b}=\dfrac{8}{3}\)
Sau khi thực hiện phép tính ta được kết quả các giá trị:
\(A=\dfrac{1}{3}\) \(B=-5\dfrac{5}{12}\) \(C=-0,22\)
Sắp xếp: \(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\) tức là \(B< C< A\)
Khi tính xong giá trị biểu thức A , B và C ta được kết quả như sau :
\(A=\dfrac{1}{3}\) ; \(B=-5\dfrac{5}{12}\); \(C=-0,22\)
Sắp xếp : \(B< C< A\)\(\left(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\right)\)
\(2a-b=\dfrac{2}{3}\left(a+b\right)\)
\(3\left(2a-b\right)=2\left(a+b\right)\)
\(6a-3b=2a+2b\)
\(4a=5b\)
\(a=\dfrac{5}{4}b\)
Thay vào A ta được:
\(A=\dfrac{\left(\dfrac{5}{4}b\right)^4+5^4}{b^4+4^4}=\dfrac{\dfrac{5^4}{4^4}\left(b^4+4^4\right)}{b^4+4}=\dfrac{5^4}{4^4}\)