K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Giả sử trong 2018 số này không tồn tại 2 số nào bằng nhau.

Giả sử \(a_1>a_2>...>a_{2018}\)

\(\Rightarrow a_{2018}\ge2,a_{2017}\ge3,...,a_1\ge2019\)

\(\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2018}^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}< 1\)(mâu thuẫn với giả thiết)

=> điều giả sử không xảy ra=>đpcm

6 tháng 5 2019

Giả sử trong 2018 số đó chẳng có số nào bằng nhau và tất cả các số đều lớn hơn 1. Thế thì:

1a21+1a22+1a23+…+1a220181a12+1a22+1a32+…+1a20182≤122+132+142+…+120192≤122+132+142+…+120192

Cơ mà:

122+132+142+…+120192122+132+142+…+120192<11.2+12.3+13.4+…+12018.2019<11.2+12.3+13.4+…+12018.2019

=1–12019<1=1–12019<1 (theo phần a)

Thế nhưng đề bài cho 1a21+1a22+1a23+…+1a22018=11a12+1a22+1a32+…+1a20182=1 (vô lý)

Vậy thể nào trong 2018 số tự nhiên đó cũng có 2 số bằng nhau

22 tháng 1 2022

Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50

⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150

<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)

⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau

7 tháng 4 2018

Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100

Mà a1,a2,a3,...,a100 thuộc Z

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)

Vậy có ít nhất 2 số bằng nhau trong dãy số trên

27 tháng 12 2018

còn cách nào khác k bạn

8 tháng 1 2019

Giả sử 100 số đó đôi một khác nhau

Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)

Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.

Vì vậy điều giả sử sai, ta có điều phải chứng minh

9 tháng 1 2019

cảm ơn bạn