Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x_1-3y_1\right)^{2016}\ge0;\left(2x_2-3y_2\right)^2\ge0;......;\left(2x_{2015}-3y_{2015}\right)\ge0\)
nên \(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-3y_{2015}\right)\le0\)
\(\Leftrightarrow\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+..+\left(2x_{2015}-3y_{2015}\right)^{2016}=0\)
\(\Leftrightarrow2x_1-3y_1=0;2x_2-3y_2=0;....;2x_{2015}-3y_{2015}=0\)
\(\Leftrightarrow2x_1=3y_1\)
\(2x_2=3y_2\)
............................
\(2x_{2015}=3y_{2015}\)
\(\Leftrightarrow2\left(x_1+x_2+...+x_{2015}\right)=3\left(y_1+y_2+...+y_{2015}\right)\)
\(\Leftrightarrow\)\(\frac{x_1+x_2+x_3+...+x_{2015}}{y_1+y_2+y_3+...+y_{2015}}=\frac{3}{2}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=...=\frac{x_{2016}}{x_{2016} }=\frac{x_1+x_2+...+x_{2017}}{x_2+x_3+...+x_{2017}} \)( 2016 số)
\(=>\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_2^{2016}}{ x_3^{2016}}=...=\frac{x_{2016}^{2016}}{x_{2017}^{2016}} =\frac{(x_1+x_2+...+x_{2016})^{2016}}{ (x_2+x_3+...+x_{2017})^{2016}}\)
Mà \(\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_1}{x_2}. \frac{x_2}{x_3}.\frac{x_3}{x_4}...\frac{x_{2016}}{x_{2017}} =\frac{x_1}{x_{2017}}\)
=>đpcm
dễ vcl :)))
( 2017x1 - 2016y2 )2 + ( 2017x2 - 2016y2 )2 + ... + ( 2017x2016 - 2016x2016)2
Chẳng có quy luật gì cả :)))
Hình như sai đề
----