Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=...=\frac{x_{2016}}{x_{2016} }=\frac{x_1+x_2+...+x_{2017}}{x_2+x_3+...+x_{2017}} \)( 2016 số)
\(=>\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_2^{2016}}{ x_3^{2016}}=...=\frac{x_{2016}^{2016}}{x_{2017}^{2016}} =\frac{(x_1+x_2+...+x_{2016})^{2016}}{ (x_2+x_3+...+x_{2017})^{2016}}\)
Mà \(\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_1}{x_2}. \frac{x_2}{x_3}.\frac{x_3}{x_4}...\frac{x_{2016}}{x_{2017}} =\frac{x_1}{x_{2017}}\)
=>đpcm
\(\frac{x_1-1}{2010}=...=\frac{x_{2010}-2010}{1}=\frac{x_1+x_2+...+x_{2010}-\left(1+2+...+2010\right)}{2010+2009+...+1}\)
\(=\frac{2\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)
Vậy thay vào ta được: \(x_1=x_2=...=x_{2010}=2011\)
\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=...=\frac{x_{2010}-2010}{1}=\frac{\left(x_1-1\right)+\left(x_2-2\right)+...+\left(x_{2010}-2010\right)}{1+2+...+2010}\) (TC DTSBN)
\(=\frac{\left(x_1+x_2+...+x_{2010}\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=\frac{2.\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)
\(\Rightarrow x_1-1=2010;x_2-1=2009;....;x_{2010}-2010=1\)
=> x1 = x2 = x3 =..... = x2010 = 2011