Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow a^2b\ge a^2+ab-a\)
Tương tự \(b^2c\ge b^2+bc-b;c^2a\ge c^2+ca-a\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge a^2+b^2+c^2+ab+bc+ca-a-b-c+1\)\(=a^2+b^2+c^2+\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc\ge a^2+b^2+c^2\)
Hay \(a^2+b^2+c^2\le a^2b+b^2c+c^2a+1\)
Bài này sử dụng bất đẳng thức tam giác
Đặt vectơ AB = a vectơ BC = b
Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) hay \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\overrightarrow{AC}\)
Ta lại có: \(AB+BC\ge AC\) ( bđt tam giác )
Từ 2 điều trên ta suy ra đpcm \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
a. \(\overrightarrow{AB}=\left(4;-2\right)\) ; \(\overrightarrow{BC}=\left(-2;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{BC}=4.\left(-2\right)+\left(-2\right).\left(-4\right)=0\\AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\\BC=\sqrt{\left(-2\right)^2+\left(-4\right)^2}=2\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB\perp BC\\AB=BC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) vuông cân tại B
\(S_{ABC}=\dfrac{1}{2}AB.BC=10\)
b.
\(\overrightarrow{AC}=\left(2;-6\right)=2\left(1;-3\right)\)
(h) vuông góc AC nên nhận (1;-3) là 1 vtpt
Phương trình: \(1\left(x-2\right)-3\left(y-4\right)=0\Leftrightarrow x-3y+10=0\)
c.
Gọi M là trung điểm BC \(\Rightarrow M\left(5;0\right)\)
Phương trình trung trực BC qua M và vuông góc BC (nên nhận (1;2) là 1 vtpt):
\(1\left(x-5\right)+2y=0\Leftrightarrow x+2y-5=0\)
Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\x-3y+10=0\end{matrix}\right.\) \(\Rightarrow K\left(-1;3\right)\)
Chứng minh ABHK là hbh, nhưng H là điểm nào vậy bạn?
d.
Gọi \(D\left(0;d\right)\Rightarrow\overrightarrow{CD}=\left(-4;d+2\right)\)
\(\overrightarrow{AC}.\overrightarrow{CD}=0\Leftrightarrow2.\left(-4\right)+\left(-6\right).\left(d+2\right)=0\Rightarrow d=-\dfrac{10}{3}\)
\(\Rightarrow D\left(0;-\dfrac{10}{3}\right)\)
ta có: (a-b)2 \(\ge\) 0
=> a2 + b2 - 2ab \(\ge\) 0
=> a2 +b2 - ab \(\ge\) 0
=> a2 +b2 \(\ge\) ab
=> (a+ b)(a2 +b2 - ab) \(\le\) ab(a+b) (vì a\(\le0;\) b\(\le0\) nên a+b \(\le\)0)
=> a3 + b3 \(\le\) ab(a+b)
=>đpcm.
Ta có đánh giá sau với a không âm:
\(\dfrac{a}{1+a^2}\le\dfrac{36a+3}{50}\)
Thật vậy, BĐT tương đương:
\(\left(36a+3\right)\left(a^2+1\right)\ge50a\)
\(\Leftrightarrow\left(3a-1\right)^2\left(4a+3\right)\ge0\) (luôn đúng)
Tương tự: \(\dfrac{b}{1+b^2}\le\dfrac{36b+3}{50}\) ; \(\dfrac{c}{1+c^2}\le\dfrac{36c+3}{50}\)
Cộng vế: \(VT\le\dfrac{36\left(a+b+c\right)+9}{50}=\dfrac{9}{10}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Ta chứng minh bđt phụ \(\dfrac{a}{1+a^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\)
Thật vậy bđt trên \(\Leftrightarrow\dfrac{-3a^2+10a-3}{10\left(1+a^2\right)}-\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\le0\)
\(\Leftrightarrow\left(a-\dfrac{1}{3}\right)\left[\dfrac{3\left(3-a\right)}{10\left(1+a^2\right)}-\dfrac{18}{25}\right]\le0\)
\(\Leftrightarrow-\dfrac{36\left(a-\dfrac{1}{3}\right)^2\left(\dfrac{3}{4}+a\right)}{50\left(1+a^2\right)}\le0\) ( luôn đúng với mọi \(a\)\(\ge\)0)
Tương tự cũng có:\(\dfrac{b}{1+b^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(b-\dfrac{1}{3}\right)\); \(\dfrac{c}{1+c^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(c-\dfrac{1}{3}\right)\)
Cộng vế với vế => VT\(\le\dfrac{9}{10}+\dfrac{18}{25}\left(a+b+c-1\right)=\dfrac{9}{10}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Xét hình bình hành \(ABCD\).
\(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AD}\)
\(\left|\overrightarrow{a}\right|-\left|\overrightarrow{b}\right|=AB-AD=AB-DC\)
\(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\)
\(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=AB+AD=AB+CD\).
Xét tam giác \(ADC\)có:
\(AB-DC< AC< AB+DC\)(theo bất đẳng thức tam giác)
Do đó ta suy ra đpcm.