K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

Đáp án C

27 tháng 9 2021

C. M = 3

22 tháng 9 2023

-4 -2 5 m

Để \(A\cap B\ne\varnothing\Leftrightarrow m\ge-2\)

22 tháng 9 2023

b làm chi tiết dc hok mình ko hiểu lắm :((

 

 

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Đề thiếu. Bạn xem lại đề.

6 tháng 10 2021

mình có sửa lại rồi ạ 

 

Để A giao B khác rỗng thì \(7-4m< =4-m\)

=>-3m<=-3

=>m>=1

=>Chọn A

23 tháng 9 2023

\(\left\{{}\begin{matrix}A=\left(2;+\infty\right)\\B=\left(m^2-7;+\infty\right)\end{matrix}\right.\) \(\left(m>0\right)\)

Để \(A\)\\(B\) là 1 khoảng có độ dài bằng 6

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7>2\\m^2-7-2=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>9\\m^2=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>3\cup m< -3\\m=5\cup m=-5\end{matrix}\right.\)

\(\Leftrightarrow m=5\cup m=-5\) thỏa mãn điều kiện đề bài

11 tháng 9 2023

\(mx^2-4x+m-3=0\left(1\right)\)

Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow3< m< 4\)

14 tháng 12 2023

Ta có:

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\) 

+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)

          \(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)

          \(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Mặt khác:

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

Để A, G, I thẳng hàng 

=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)