K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Ta có \(\left(\sqrt{x^2+2016}-x\right)\left(\sqrt{x^2+2016}+x\right)=2016\Rightarrow\sqrt{x^2+2016}-x=y+\sqrt{y^2+2016}\)Tương tự, ta có \(\sqrt{y^2+2016}-y=\sqrt{x^2+2016}+x\)

Cộng hai vế, ta có \(2\left(x+y\right)=0\Leftrightarrow x+y=0\)

NM
23 tháng 10 2021

ta có :

undefined

23 tháng 10 2021

2022 mà bạn

29 tháng 1 2016

??? sqrt là j

29 tháng 1 2016

bn ơi sqrt là j vậy

10 tháng 8 2016

bài đó nhân liên hợp là ra

27 tháng 9 2017

Bạn tham khảo cách làm của bạn Thắng Nguyễn ở đây nhé

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath

27 tháng 8 2016

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

20 tháng 9 2016

x+y =0

=> P = 1

17 tháng 12 2016

Có :\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2016}\Rightarrow2016=\frac{xy}{x+y}\)

Do Đó :P =\(\frac{\sqrt{x+y}}{\sqrt{x-2016}+\sqrt{y-2016}}\)

\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{x-\frac{xy}{x+y}}+\sqrt{y-\frac{xy}{x+y}}}\)

\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{\frac{x^2+xy-xy}{x+y}}+\sqrt{\frac{y^2+xy-xy}{x+y}}}\)

\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{\frac{x^2}{x+y}}+\sqrt{\frac{y^2}{x+y}}}\)

\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{x+y}}}\)   (vì x;y dương )

\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x+y}{\sqrt{x+y}}}\)\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{x+y}}\)

\(\Leftrightarrow P=1\)

7 tháng 5 2018

Ta có: \(\hept{\begin{cases}\left(2x-y-4\right)^{2016}\ge0\\\left(3x+2y-13\right)^{2016}\ge0\end{cases}}\)

\(\Rightarrow\left(2x-y-4\right)^{2016}+\left(3x+2y-13\right)^{2016}\ge0\)

Dấu bằng xảy ra khi

\(\hept{\begin{cases}2x-y-4=0\\3x+2y-13=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

\(\Rightarrow A=\left(x-y\right)^{2016}+2016=\left(3-2\right)^{2016}+2016=2017\)

27 tháng 11 2017

Từ :\(\hept{\begin{cases}x+y+z=3\\x^4+y^4+z^4=3xyz\end{cases}}\)\(\Rightarrow x^4+y^4+z^4=\left(x+y+z\right)xyz=x^2yz+xy^2z+xyz^2\)

Áp dụng AM - GM ta có :

\(x^2yz=x.x.y.z\le\frac{x^4+x^4+y^4+z^4}{4}=\frac{2x^4+y^4+z^4}{4}\)

\(xy^2z=x.y.y.z\le\frac{x^4+y^4+y^4+z^4}{4}=\frac{x^4+2y^4+z^4}{4}\)

\(xyz^2=x.y.z.z\le\frac{x^4+y^4+z^4+z^4}{4}=\frac{x^4+y^4+2z^4}{4}\)

\(\Rightarrow x^2yz+xy^2z+xyz^2\le\frac{4\left(x^4+y^4+z^4\right)}{4}=x^4+y^4+z^4\)

Mà đề lại cho \(x^4+y^4+z^4=x^2yz+xy^2z+xyz^2\) \(\Rightarrow x=y=z\)

Kết hợp với x + y + z = 3 \(\Rightarrow x=y=z=1\)

Thay vào M ta được : \(M=2000.1^{2016}+1^{2016}+1^{2016}=2002\)

27 tháng 11 2017

Thanks bạn