Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a chia 4 dư 1; b chia 4 dư 2; c chia 4 dư 3 ta có
\(\left(a-1\right)⋮4;\left(b-2\right)⋮4;\left(c-3\right)⋮4\)
\(\Rightarrow\left(a-1\right)+\left(b-2\right)+\left(c-3\right)⋮4\)
\(\Rightarrow\left(a+b+c\right)-2-4⋮4\)
\(\Rightarrow\left(a+b+c\right)-2⋮4\)
\(\Rightarrow\left(a+b+c\right)-2⋮2\Rightarrow a+b+c⋮2\)
Nếu là số dư khác nhau thì a:3 dư 1,b:3 dư 2 hoặc ngược lại.
Nếu vậy thì (a+b) chia hết cho 3 vì số dư là 1+2=3 chia hết cho 3
Đây chỉ là mình nghĩ sao viết vậy thôi nha!
Xét các trường hợp:
TH1: a = 3k + 1; b = 3k + 2. ( k là số tự nhiên)
=> a + b = 3k + 1 + 3k + 2 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
TH2: a = 3k + 2; b = 3k + 1. ( k là số tự nhiên)
=> a + b = 3k + 2 + 3k + 1 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
Vậy ( a + b ) chia hết cho 3
Số tự nhiên a sẽ có dạng 6p + 2
Số tự nhiên b sẽ có dạng 6q + 3
Ta có:\(\left(6p+2\right)\left(6q+3\right)\)
\(=6p\left(6q+3\right)2\left(6q+3\right)\)
\(=36pq.18p.12q.6\)
\(36pq;18p;12q;6\)đều chia hết cho 6(đpcm)
a) TH1 : a,b chia 3 dư 1
Đặt a = 3k + 1 ( k thuộc N )
Đặt b = 3t + 1 ( t thuộc N )
ab - 1 = ( 3k + 1 ). ( 3t + 1 ) - 1
= 9kt + 3k + 3t + 1 - 1
= 9kt + 3k + 3t chia hết cho 3 ( đpcm )
TH2 : a,b chia 3 dư 2
Đặt a = 3k + 2 ( k thuộc N )
Đặt b = 3t + 2 ( t thuộc N )
ab - 1 = ( 3k + 2 ). ( 3t + 2 ) - 1
= 9kt + 6k + 6t + 4 - 1
= 9kt + 6k + 6t + 3 chia hết cho 3 ( đpcm )
b) Vì a, b có số dư khác nhau
=> một số chia 3 dư 1
một số chia 3 dư 2
Đặt a = 3k + 1 ( k thuộc N )
b = 3t + 2 ( t thuộc N )
ab + 1 = ( 3k + 1 ) .( 3t + 2 ) + 1
= 9kt + 6k + 3t + 2 + 1
= 9kt + 6k + 3t + 3 chia hết cho 3 ( ddpcm )