K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Gọi số thứ nhất là a

số thứ 2 là b

Theo bài ra ta có \(\left\{{}\begin{matrix}a=5k+3\left(k\in Z\right)\\b=10n+7\left(n\in N\right)\end{matrix}\right.\)

Suy ra \(a^2+b^2=\left(5k+3\right)^2+\left(10n+7\right)^2\)

=\(25k^2+30k+9+100n^2+140n+49\)

=\(25k^2+30k+100n^2+140n+58\)

\(\left\{{}\begin{matrix}25k^2⋮5\\30k⋮5\\100n^2⋮5\\140n⋮5\end{matrix}\right.\)

Mà 58 chia 5 dư 3

Vậy tổng bình phương của hai số này chia cho 5 dư 3

25 tháng 5 2016

co nhu so 6 chia cho 5 du 1 va so 7 chia 5 du 2

tong binh phung cua hai so nay la 85 chia het cho 5

25 tháng 5 2016

Gọi số thứ nhất là a , số thứ hai là b.

Tổng bình phương 2 số trên = a*a+b*b.

Vì a:5 dư 1 nên a*a chia 5 dư 1(vì 1*1=1)

Vì b:5 dư 2 nên b*b chia 5 dư 4(vì 2*2=4)

Vậy a*a+b*b chia 5 dư: 1+4=5 hay a*a + b*b chia hết cho 5.

=> Tổng bình phương 2 số trên chia hết cho 5

                          Đáp số: có chia hết cho 5

22 tháng 6 2017

Ta  có:    a= 5k+1;   b= 5x +2; 

thì:  (5k+1)2+(5x+2)2=25k2+1+25x2+4=25(x2+k2)+5 chia hết cho 5;

Vậy tổng đó chia hết cho 5; ủng hộ nha bạn

19 tháng 10 2016

a=5n+1

b=5k+2

a^2=1 ﴾mod 5﴿

b^2=4 ﴾mod5﴿

﴾a^2+b^2﴿=0 ﴾mod 5﴿

không được dùng thì khai triển ra

a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2

25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5 

chia hết mà còn dư ak bạn ~!~

19 tháng 10 2016

a=5n+1

b=5k+2 

a^2=1 (mod 5)

b^2=4 (mod5)

(a^2+b^2)=0 (mod 5) 

không được dùng thì khai triển ra

a^2+b^2=(5n+1)^2+(5k+2)^2

25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5

29 tháng 10 2016
  • Ta có a : 5 dư 1 => a = 5t +1 ( t thuộc N )
  •          a : 5 dư 2 => a= 5k +2 ( k thuộc N )
  • Theo BT ta có ( 5t + 1 )2 + ( 5k + 2 )2 = 25t2 +10t + 1 + 25k2 + 20k + 4

                                                                 = 25( t2  + k2 ) + 10( t + 10k ) +5  chia hết cho 5 vì 25( t + k) ; 10( t + 10k ) và 5 đều chia hết cho 5

      Nên tổng các bình phương của hai số a và b đều chia hết cho 5

      

Gọi bốn số liên tiếp là 5k+1;5k+2;5k+3;5k+4

Ta có: \(\left(5k+1\right)^2+\left(5k+2\right)^2+\left(5k+3\right)^2+\left(5k+4\right)^2\)

\(=25k^2+10k+1+25k^2+20k+4+25k^2+30k+9+25k^2+40k+16\)

\(=100k^2+100k+30\)

\(=10\left(10k^2+10k+3\right)⋮10\)

3 tháng 10 2021

neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co : 

+  So chia 5 du 1 co dang 5k +1 

+   So chia 5 du 2 co dang 5k+2

+   So chia 5 du 3 co dang 5k +3 

+ So chia 5 du 4 co dang 5k+4

tong cac stn do la :

5k +1+ 5k+ 2 +5k+3 +5k+4 

= 5k .4 + ( 1+2+3+4)

= 5k.4+10

Vi : 5k ⋮ 5 

5k.4 ⋮ 5 và 10 ⋮5 

5k .4 +10 ⋮5